Fachbereich Ingenieur- und Naturwissenschaften
Refine
Document Type
- Article (140)
- Article in a Periodical of the TH Wildau (51)
- Conference Proceeding (50)
- Part of a Book (9)
- Doctoral Thesis (8)
- Preprint (6)
- Master's Thesis (5)
- Bachelor Thesis (3)
- Contribution to a Periodical (2)
- Report (1)
Year of publication
Institute
Has Fulltext
- yes (276)
Keywords
- C60 fullerene (5)
- DNA (4)
- RFID (4)
- Mars (3)
- apoptosis (3)
- leukemic cells (3)
- next-generation sequencing (3)
- 3D measurement (2)
- Berberine (2)
- Doxorubicin (2)
The resistive switching properties of HfO₂ based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al₂O₃ into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I–V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.
Background
Cutaneous leishmaniasis (CL) is a vector-borne parasitic diseases of public health importance that is prevalent in the West Bank but not in the Gaza Strip. The disease caused by parasitic protozoans from the genus Leishmania and it is transmitted by infected phlebotomine sand flies. The aim of our study is to investigate the eco-epidemiological parameters and spatiotemporal projections of CL in Palestine over a 30-years period from 1990 through 2020 and to explore future projections until 2060.
Methodology/Principal findings
This long-term descriptive epidemiological study includes investigation of demographic characteristics of reported patients by the Palestinian Ministry of Health (PMoH). Moreover, we explored spatiotemporal distribution of CL including future projection based on climate change scenarios. The number of CL patients reported during this period was 5855 cases, and the average annual incidence rate (AAIR) was 18.5 cases/105 population. The male to female ratio was 1.25:1. Patients-age ranged from 2 months to 89 years (mean = 22.5, std 18.67, and the median was 18 years). More than 65% of the cases came from three governates in the West Bank; Jenin 29% (1617 cases), Jericho 25% (1403), and Tubas 12% (658) with no cases reported in the Gaza Strip. Seasonal occurrence of CL starts to increase in December and peaked during March and April of the following year. Current distribution of CL indicate that Jericho, Tubas, Jenin and Nablus have the most suitable climatic settings for the sandfly vectors. Future projections until 2060 suggest an increasing incidence from northwest of Jenin down to the southwest of Ramallah, disappearance of the foci in Jericho and Tubas throughout the Jordan Vally, and possible emergence of new foci in Gaza Strip.
Conclusions/Significance
The future projection of CL in Palestine until 2060 show a tendency of increasing incidence in the north western parts of the West Bank, disappearance from Jericho and Tubas throughout the Jordan Vally, and emergence of new CL endemic foci in the Gaza Strip. These results should be considered to implement effective control and surveillance systems to counteract spatial expansion of CL vectors.
Due to the high share of industry in total electricity consumption, industrial demand-side management can make a relevant contribution to the stability of power systems. At the same time, companies get the opportunity to reduce their electricity procurement costs by taking advantage of increasingly fluctuating prices on short-term electricity markets, the provision of system services on balancing power markets, or by increasing the share of their own consumption from on-site generated renewable energy. Demand-side management requires the ability to react flexibly to the power supply situation without negatively affecting production targets. It also means that the management and operation of production must consider not only production-related parameters but also parameters of energy availability, which further increase the complexity of decision-making. Although simulation studies are a recognized tool for supporting decision-making processes in production and logistics, the simultaneous simulation of material and energy flows has so far been limited mainly to issues of energy efficiency as opposed to energy flexibility, where application-oriented experience is still limited. We assume that the consideration of energy flexibility in the simulation of manufacturing systems will amplify already known pitfalls in conducting simulation studies. Based on five representative industrial use cases, this article provides practitioners with application-oriented experiences of the coupling of energy and material flows in simulation modeling of energy-flexible manufacturing, identifies challenges in the simulation of energy-flexible production systems, and proposes approaches to face these challenges. Seven pitfalls that pose a particular challenge in simulating energy-flexible manufacturing have been identified, and possible solutions and measures for avoiding them are shown. It has been found that, among other things, consistent management of all parties involved, early clarification of energy-related, logistical, and resulting technical requirements for models and software, as well as the application of suitable methods for validation and verification are central to avoiding these pitfalls. The identification and characterization of challenges and the derivation of recommendations for coping with them can raise awareness of typical pitfalls. This paper thus helps to ensure that simulation studies of energy-flexible production systems can be carried out more efficiently in the future.
Laboratory plasmas inherently exhibit temperature and density gradients leading to complex investigations. We show that plasmas generated by laser ablation can constitute a robust exception to this. Supported by emission features not observed with other sources, we achieve plasmas of various compositions which are both uniform and in local thermodynamic equilibrium. These properties characterize an ideal radiation source opening multiple perspectives in plasma spectroscopy. The finding also constitutes a breakthrough in the analytical field as fast analyses of complex materials become possible.
BACKGROUND:
After excitation with light photoacids can change the pH in a solution by release of a proton. They have been used mostly for excited state proton transfer studies. In this review the general functionality and mechanisms and the subdivision of photoacids is explained.
STATE OF THE ART:
Different uses of photoacids are described, covering a wide range of various biochemical topics, focusing on biochemical applications. Examples for the introduced subdivisions are covered.
CONCLUSIONS AND OUTLOOK:
The areas in which photoacids can be employed are diverse. Photoacids have a promising future in biotechnology and biochemistry and should be considered for upcoming applications, especially in non-invasive control of biochemical reactions.
Three building blocks have been designed to chemically link to a gold surface and vertically self-assemble through thymine–adenine hydrogen bonds. Starting from these building blocks, two different films were engineered on gold surface. Film 1 consists of adenine linked to lipoic acid (Lipo–A) to covalently bind to the gold surface, and ZnTPP linked to a thymine (T–ZnTPP). Film 2 has an additional noncovalently linked layer: a helical undecapeptide analogue of the trichogin GA IV peptide, in which four glycines were replaced by four lysines to favor a helical conformation and reduce flexibility and the two extremities were functionalized with thymine and adenine to enable Lipo–A and T–ZnTPP binding, respectively. These films were characterized by electrochemical and spectroscopic techniques, and were very stable over time and when in contact with solution. Under illumination, they could generate current with higher efficiency than similar previously described systems.
The isoquinoline quaternary alkaloid Berberine possesses a variety of pharmacological properties that suggests its promising application for an anticancer delivery system design utilizing its ability to intercalate DNA. In the current work, we have investigated the effects of Berberine on the human T cell leukemia cell line in vitro. Fluorescent microscopy of leukemic cells revealed Berberine nuclear localization. The results showed that Berberine inhibited leukemic cell growth in a time- and dose-dependent manner, that was associated with reactive oxygen species production intensification and caspase 3/7 activity increase with followed apoptosis induction. Berberine was used as a toxic and phototoxic agent for triple system synthesis along with DNA as a carrier and nanosilver as a plasmonic accelerator of Berberine electronic transitions and high energy emission absorbent centers. The proposed method allows to obtain the complex of DNA with Berberine molecules and silver nanoparticles. The optical properties of free components as well as their various combinations, including the final triple system DNA-Nanosilver-Berberine, were investigated. Obtained results support the possibility to use the triple system DNA-Nanosilver-Berberine as an alternative therapeutic agent for cancer treatment.
Through Silicon Via (TSV) technology is a key in 3D integration of circuits by the creation of interconnects using vias, which go through the full silicon wafer. Typically, a highly-selective Bosch Si etch process is used. It is characterized by a high etch rate at a high aspect ratio, whereby scallops on the sidewalls are generated. In this work, square via arrays with dimensions from 3 to 50 μm and up to 300 μm depth were fabricated and analyzed by spectroscopic reflectometry. The reflectometric data are compared to simulations by a novel theoretical approach. In order to simulate the reflectance spectra of TSV arrays, a combination of 2D and 3D rigorous coupled wave analysis was applied. Besides the via depth, the sidewall angle and the corner radius of the bottom profile were considered in the model. The general requirements on spectral resolution in TSV metrology are discussed.
Comprehensive diagnostics is a prerequisite for the application of graphene in semiconductor technologies. Here, the authors present long-term investigations of graphene on 200-mm Ge(100)/Si(100) wafers under clean room environmental conditions. Diagnostic of graphene was performed by a fast and nondestructive metrology method based on the combination of spectroscopic ellipsometry and reflectometry (SE/R), realized within a wafer optical metrology tool. A robust procedure for unambiguous thickness monitoring of a multilayer film stack, including graphene, interface layer GeOx underneath graphene, and surface roughness is developed and applied for process control. The authors found a relationship between the quality of graphene and the growth of GeOx beneath graphene. Enhanced oxidation of Ge beneath graphene was registered as a long-term process. SE/R measurements were validated and complemented using atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and secondary ion mass spectrometry. This comparative study shows a high potential for optical metrology of graphene deposited on Ge/Si structures, due to its great sensitivity, repeatability, and flexibility, realized in a nondestructive way.
The first atomic layer deposition process for a ternary oxide is reported, which contains a metal of the platinum group, the delafossite PtCoO2. The deposition with the precursors trimethyl-Pt-methylcyclopentadienyl, Co-bis(N-t-butyl-N′-ethylpropanimidamidate), and oxygen plasma results in a process with a nearly constant growth rate and stoichiometric composition over a wide temperature window from 100 to 320 °C. Annealing of the as-deposited amorphous films in an oxygen atmosphere in a temperature window from 700 to 800 °C leads to the formation of the delafossite phase. Very thin films show a pronounced preferred orientation with the Pt sheets being almost parallel to the substrate surface while arbitrary orientation is observed for thicker films. The conformal coating of narrow trenches highlights the potential of this atomic-layer-deposition process. Moreover, heterostructures with magnetic films are fabricated to demonstrate the potential of PtCoO2 for spintronic applications.