Electronic spectroscopy of 9,10-dichloroanthracene inside helium droplets

  • The spectroscopy of molecules doped into superfluid helium droplets provides information on both, the dopant molecule and the helium environment. Electronic spectra of 9,10-dichloroanthracene in helium droplets are presented and compared with corresponding gas phase spectra to unravel the influence of the helium environment. The combined investigation of fluorescence excitation and dispersed emission provides information on dynamic processes in addition to energetic conditions. For vibronic states, the helium induced decay channels dominate over all intramolecular channels that contribute to the gas phase behavior. In addition to the triplet splitting caused by the Cl isotopes, a fine structure resolved for all transitions in the fluorescence excitation spectrum was found, which is the signature of microsolvation of this compound in helium droplets. This fine structure is identified as a single pure molecular transition accompanied by a sharply structured phonon wing. The corresponding fine structure measured for bare anthracene shows remarkable differences.

Export metadata

Additional Services

Search Google Scholar
Author:Alkwin Slenczka, Dominik Pentlehner
Parent Title (English):The Journal of Chemical Physics
Document Type:Contribution to a Periodical
Publication Year:2013
Tag:Doppler effect; Emission spectroscopy; Helium nanodroplets
faculties / departments:Fakultät für Chemische Technologie und Wirtschaft
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten