• search hit 12 of 45
Back to Result List

Microstructure-based modeling of high-strength linepipe steels

  • HE MODERN LONGITUDINALLY WELDED pipes with new generation of steel materials exhibit excellent mechanical properties due to the continuous improvements in thermomechanical controlled processing of plates (TMCP) and pipe (UOE) production processes. While the adjustment of process parameters allows for optimized design of microstructure, safe installation and operation of these pipes for long distance, gas transmission pipelines require a detailed knowledge and characterization of their deformation and fracture performance for specific application. Although the influence of texture on the material properties can be qualitatively estimated, a quantitative link between the microstructural constituents and mechanical behavior is still missing. This paper aims to present the procedure for the development of microstructure-based model to quantitatively describe the mechanical behavior of bainitic X80 pipeline steel. In the first step, the metallographic analysis is conducted to identify the microstructural characteristics, such as volume fractions of microstructure constituents (granular and lower bainite, M-A phase) and their distributions. The strength properties in terms of flow curves are determined by tensile tests on mini-flat and round bar specimens with different sizes. Subsequently, a 2D three-phase model is developed based on the results from the quantitative analyses of microstructure with each phase modeled using the von-Mises plasticity theory. The flow curves of single phases are estimated by considering experimental findings, the chemical composition and microstructural description of each phase. This 2D FE model is then applied to predict ielding and hardening behavior. In addition to the 2D three-phase model, a 3D two-phase model is developed for the purposes of exploring the viability of using a spectral solver to analyze X80 synthetic microstructures. Here, the FFT-based approach is compared against the crystal-plastic finite-element method. The results contribute to a better understanding of the mechanical behavior and allow a more precise microstructure design of the bainitic steels.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Aida NonnORCiDGND, Albert R. Cerrone, C. Stallybrass, H. Meuser
DOI:https://doi.org/10.13140/2.1.2797.4404
Parent Title (English):6th Pipeline Technology Conference 2013, 6-9 October, Ostend, Belgium
Document Type:conference proceeding (article)
Language:English
Year of first Publication:2013
Release Date:2021/03/25
Institutes:Fakultät Maschinenbau
Technologie-Campus Neustadt an der Donau
Fakultät Maschinenbau / Computational Mechanics and Materials Lab (CMM)
Publication:Externe Publikationen
research focus:Produktion und Systeme