Produktion und Systeme
Refine
Year of publication
Document Type
- Article (407)
- conference proceeding (article) (346)
- Part of a Book (54)
- Book (36)
- conference proceeding (presentation, abstract) (27)
- Report (22)
- conference talk (18)
- conference proceeding (volume) (13)
- Doctoral Thesis (9)
- Patent (7)
Is part of the Bibliography
- no (953)
Keywords
- Produktionsplanung (19)
- additive manufacturing (16)
- Hierarchische Produktionsplanung (12)
- PPS (11)
- Simulation (11)
- Ablaufplanung (9)
- BEHAVIOR (9)
- Enterprise-Resource-Planning (9)
- elemental semiconductors (9)
- simulation (9)
Institute
- Fakultät Maschinenbau (426)
- Fakultät Elektro- und Informationstechnik (166)
- Fakultät Informatik und Mathematik (166)
- Fakultät Angewandte Natur- und Kulturwissenschaften (117)
- Fakultät Business and Management (84)
- Labor Intelligente Materialien und Strukturen (74)
- Mechatronics Research Unit (MRU) (72)
- Technologie-Campus Neustadt an der Donau (71)
- Labor Faserverbundtechnik (LFT) (63)
- Labor Laser-Materialbearbeitung (LMP) (60)
Begutachtungsstatus
- peer-reviewed (348)
- begutachtet (4)
Fused filament fabrication (FFF) is a widely used additive manufacturing process for producing functional components and prototypes. The FFF process involves depositing melted material layer-by-layer to build up 3D physical parts. The quality of the final product depends on several factors, including the component density and tensile strength, which are typically determined through destructive testing methods. X-ray microtomography (XCT) can be used to investigate the pore sizes and distribution. These approaches are time-consuming, costly, and wasteful, making it unsuitable for high-volume manufacturing. In this paper, a new method for non-destructive determination of component density and estimation of the tensile strength in FFF processes is proposed. This method involves the use of gradual error detection by sensors and convolutional neural networks. To validate this approach, a series of experiments has been conducted. Component density and tensile strength of the printed specimens with varying extrusion factor were measured using traditional destructive testing methods and XCT. The cumulative error detection method was used to predict the same properties without destroying the specimens. The predicted values were then compared with the measured values, and it was observed that the method accurately predicted the component density and tensile strength of the tested parts. This approach has several advantages over traditional destructive testing methods. The method is faster, cheaper, and more environmentally friendly since it does not require the destruction of the product. Moreover, it facilitates the testing of each individual part instead of assuming the same properties for components from one series. Additionally, it can provide real-time feedback on the quality of the product during the manufacturing process, allowing for adjustments to be made as needed. The advancement of this approach points toward a future trend in non-destructive testing methodologies, potentially revolutionizing quality assurance processes not only for consumer goods but various industries such as electronics or automotive industry. Moreover, its broader applications extend beyond FFF to encompass other additive manufacturing techniques such as selective laser sintering (SLS), or electron beam melting (EBM). A comparison between the old destructive testing methods and this innovative non-destructive approach underscores the possible fundamental change toward more efficient and sustainable manufacturing practices. This approach has the potential to significantly reduce the time and cost associated with traditional destructive testing methods while ensuring the quality of FFF-manufactured products.
During the hot pressing of pure titanium and different carbon steels in a temperature range of ϑ = 950–1050 °C, a compound layer up to dL≈10 μm thick is formed at the titanium–steel interface. With a higher carbon content of the used steel, the layer thickness increases. The carbon concentration within the layer is in the range of stoichiometry for TiC. Apart from TiC, no other phases can be detected by X-ray diffraction (XRD) measurements inside the formed layer. The calculation of the activation energy for the TiC layer formation is Q = 126.5–136.7 kJ mol−1 and is independent of the carbon content of the steel. The resulting microstructure has a grain size gradient, wherein the mechanical properties, such as hardness and Young‘s modulus, are almost constant. Statistical analysis using Response Surface Methodology (RSM) indicates that the carbon content of the steel has the most significant influence on layer thickness, followed by annealing temperature and annealing time. By selecting the appropriate carbon steel and the subsequent removal of the steel, it is possible to produce targeted TiC layers on titanium substrates, which holds enormous potential for this material in wear-intensive applications.
We review the developments in life safety and the incorporation thereof in the design and assessment of structures over the last 50 years. Various measures of life safety are presented that have been developed according to the marginal life saving cost principle based on individual, societal and economic considerations. Target probabilities of failure, or target reliabilities, are central to modern structural design and assessment. These are derived either through back-calibration to existing practice or through life cycle cost minimisation, both of which yield comparable safety levels, and are underpinned by lower bounds from life safety. Life cycle cost minimisation is reviewed here, which considers all direct and indirect costs of failure including loss of life and limb, as well as the costs and efficiency of increasing reliability. We discuss the incorporation of life safety into reliability-based design and assessment through the concept of the Life Quality Index, which uses key societal indicators, namely, the GDP and life expectancy, and health economics as a basis for specifying minimum reliabilities for both new and existing structures. The current state of advancement of reliability- and risk-informed design, and recommendations for future developments in life safety are considered.
AbstractTensegrity structures are prestressed structures consisting of compressed members connected by prestressed tensioned members. Due to their properties, such as flexibility and lightness, mobile robots based on these structures are an attractive subject of research and are suitable for space applications. In this work, a mobile robot based on a tensegrity structure with two curved members connected by eight tensioned strings is analyzed in terms of deformation in the curved members. Further, the difference in locomotion trajectory between the undeformed and deformed structure after the prestress is analyzed. For that, the theory of large deflections of rod-like structures is used. To determine the relationship between acting forces and the deformation, the structure is optimized using minimization algorithms in Python. The results are validated by parameter studies in FEM. The analysis shows that the distance between the two curved members significantly influences the structure’s locomotion. It can be said that the deformation of the components significantly influences the locomotion of tensegrity structures and should be considered when analyzing highly compliant structures.
Operational wear behaviour of 3D-printed lightweight metal gears: EDS and oil analysis comparison
(2024)
Additive manufacturing (AM) has come to the fore in recent years among manufacturing techniques. This technique, which has different advantages than traditional ones such as casting, forging and machining, is expected to be widely used in producing machine parts like gears in the coming years. Therefore, experimental data on AM parameters for lightweight metal gears are important for industrial production. In this study, a wear test was applied to AlSi10Mg and Ti6Al4V gears under operational conditions, and the wear behaviour of conventionally and additively manufactured gears was compared. The amount of abrasion elements was determined by analysing the oil in the gearbox. In addition, gear surfaces were analysed using scanning electron microscopy and an energy-dispersive spectrometer before and after wear. Thus, the wear behaviour of gears produced by conventional and AM under service conditions was demonstrated comparatively.
Absorber-free laser transmission welding enables precise and clean joining of polymer foils without absorbent additives or adhesives. It is well suited for applications in medical technology and food industry, which impose high demands on process reliability. To achieve a large process window and thus a reliable process, a homogeneous weld seam temperature is desirable. For this purpose, the intensity distribution of the laser beam is adapted locally by refractive beam shaping optics. Using a donut-shaped intensity distribution, the weld seam temperature is homogenized. Thus, the process window for welding polypropylene or polyethylene foils is enlarged up to a factor of 4 compared to a conventional, Gaussian-shaped distribution. This enables the reliable welding of even 85 µm thin foils, which could only be welded to a limited extent with a conventional laser intensity distribution.
The use of intrinsically compliant tensegrity structures in manipulation systems is an attractive research topic. In this paper a 3D compliant robotic arm based on a stacked tensegrity structure consisting of x-shaped rigid members is considered. The rigid members are interconnected by a net of prestressed, tensioned members with pronounced intrinsic elasticity and by inelastic tensioned members. The system's motion is achieved by length-change of the inelastic tensioned members. The operating principle of the system is discussed with the help of kinematic considerations and verified by experiments.
The recent REACH regulations require the elimination of bisphenol-A and titanium dioxide from commercially available boron-based polymers. This has led to changes in some of the mechanical characteristics, which strongly influence the properties of magnetoactive borosilicate polymers. This work delivers results on the electrical properties and discusses some implications for future research using bisphenol-A and titanium-dioxide-free substitutes.