The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 36 of 361
Back to Result List

Magneto-hydrothermal triple-convection in a W-shaped porous cavity containing oxytactic bacteria

  • Bioconvective heat and mass transport phenomena have recently been the subject of interest in diverse fields of applications pertaining to the motion of fluids and their thermophysical properties. The transport processes in a system involving triple convective phenomena, irregular geometry, and boundary conditions constitute a complex phenomenon. This work aims to explore the mixed thermo-bioconvection of magnetically susceptible fluid containing copper nanoparticles and oxytactic bacteria in a novel W-shaped porous cavity. The buoyant convention is generated due to the isothermal heating at the wavy bottom wall, whereas the mixed convection is induced due to the shearing motion of the top-cooled sliding wall. Furthermore, the bioconvection is induced due to the manifestation of oxytactic bacteria or organisms. The inclined sidewalls are insulated. The geometry is packed with water based Cu nanoparticle mixed porous structure, which is subjected to a magnetizing field actedBioconvective heat and mass transport phenomena have recently been the subject of interest in diverse fields of applications pertaining to the motion of fluids and their thermophysical properties. The transport processes in a system involving triple convective phenomena, irregular geometry, and boundary conditions constitute a complex phenomenon. This work aims to explore the mixed thermo-bioconvection of magnetically susceptible fluid containing copper nanoparticles and oxytactic bacteria in a novel W-shaped porous cavity. The buoyant convention is generated due to the isothermal heating at the wavy bottom wall, whereas the mixed convection is induced due to the shearing motion of the top-cooled sliding wall. Furthermore, the bioconvection is induced due to the manifestation of oxytactic bacteria or organisms. The inclined sidewalls are insulated. The geometry is packed with water based Cu nanoparticle mixed porous structure, which is subjected to a magnetizing field acted horizontally. The complex transport equations are transformed into nondimensional forms, which are then computed using the finite volume-based developed code. The coupled triple-convective flow physics are explored for a wide range of involved controlling parameters, which could provide helpful insight to the system designer for its proper operation. The shape of geometry can be considered one of the important parameters to control the heat and mass transport phenomena. In general, the influence of amplitude (δ) is more compared to the waviness number (m) of the undulations. The magnitude of heat (Nu) and mass (Sh) transfer rate for the W-shaped cavity is high compared to conventional square and trapezoidal-shaped cavities. The output of the analysis could be very helpful for the designer for modeling devices operating on nanotechnology-based bioconvection, microbial fuel cells, and others.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Ali Cemal Benim
open access (DINI-Set):open_access
Qualitätssicherung:peer reviewed
open access :Gold - Erstveröffentlichung mit Lizenzhinweis
agreement:DEAL Springer
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Maschinenbau und Verfahrenstechnik
Document Type:Article
Year of Completion:2022
Language of Publication:English
Publisher:Springer Nature
Parent Title (English):scientific reports
Volume:12
Article Number:18093
URN:urn:nbn:de:hbz:due62-opus-40041
DOI:https://doi.org/10.1038/s41598-022-18401-7
ISSN:2045-2322
Tag:DOAJ
Corresponding Author:Ali Cemal Benim
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International
Release Date:2023/03/07
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.