Refine
Year of publication
Document Type
- Article (27)
- Conference Proceeding (11)
- Part of a Book (3)
- Book (1)
Keywords
Institute
In subtractive manufacturing, process monitoring systems are used to observe the manufacturing process, to predict maintenance actions and to suggest process optimizations. One challenge, however, is that the observable signals are influenced not only by the degradation of the cutting tool, but also by deviations in machinability among material batches. Thus it is necessary to first predict the respective material batch before making maintenance decisions. In this study, an approach is shown for batch-aware tool condition monitoring using feature extraction and unsupervised learning to analyze high-frequency control data in order to detect clusters of materials with different machinability, and subsequently optimize the respective manufacturing process. This approach is validated using cutting experiments and implemented as an edge framework.
Although the increasing use of automation in industry, manual assembly stations are still common and, in some situations, even inevitable. Current practice in manual assembly lines is to balance them using the takt-time of each workstation and harmonize it. However, this approach mostly does not include ergonomic aspects and thus it may lead to workforce musculoskeletal disorders, extended leaves, and demotivation. This paper presents a holistic human-centric optimization method for line balancing using a novel indicator ̶ the ErgoTakt. ErgoTakt improves the legacy takt-time and helps to find an optimum between the ergonomic evaluation of an assembly station and its balance in time. The authors used a custom version of the ErgoSentinel Software and a Microsoft Kinect depth camera to perform online and real-time ergonomic assessment. An optimization algorithm is developed to find the best-fitting solution by minimizing a function of the ergonomic RULA-value and the cycle time of each assembly workstation with respect to the worker's ability. The paper presents the concept, the system-setup and preliminary evaluation of an assembly scenario. The results demonstrate that the new approach is feasible and able to optimize an entire manual assembly process chain in terms of both, economic aspects of a well-balanced production line as well as the ergonomic issue of long term human healthy work.
Currently, many sources predict increasing use of AR technology in the industrial environment. The task of immersive productive assistance systems is to provide information contextually to the industrial user. Therefore, it is essential to explore the factors and effects that influence the visibility and the corresponding quality of this information. Caused by the technical limitations of additive display technology and application conditions, this new approach has evaluated the immersive visibility of Landolt Rings in various greyscales against ambient illuminance levels on different industrial-like surfaces, coupled with and without a white virtual background. For this purpose, an empirical study in a within-subjects-design with full factorial experimental design (n=23) was conducted on Microsoft HoloLens 2 hardware. The mean values of the main effects indicate that visibility is significantly affected by ambient illuminance (best results at lower level), greyscale (best results at middle level) and virtual background (best results with background). In contrast, the choice of surface is shown to have no statistically significant effect on visibility, however it affects the response time. Additionally, cross-interactions of variables were analyzed and lead to a design recommendation for immersive industrial applications.
Advances in machine learning detecting changeover processes in cyber physical production systems
(2020)
The performance indicator, Overall Equipment Effectiveness (OEE), is one of the most important ones for production control, as it merges information of equipment usage, process yield, and product quality. The determination of the OEE is oftentimes not transparent in companies, due to the heterogeneous data sources and manual interference. Furthermore, there is a difference in present guidelines to calculate the OEE. Due to a big amount of sensor data in Cyber Physical Production Systems, Machine Learning methods can be used in order to detect several elements of the OEE by a trained model. Changeover time is one crucial aspect influencing the OEE, as it adds no value to the product. Furthermore, changeover processes are fulfilled manually and vary from worker to worker. They always have their own procedure to conduct a changeover of a machine for a new product or production lot. Hence, the changeover time as well as the process itself vary. Thus, a new Machine Learning based concept for identification and characterization of machine set-up actions is presented. Here, the issue to be dealt with is the necessity of human and machine interaction to fulfill the entire machine set-up process. Because of this, the paper shows the use case in a real production scenario of a small to medium size company (SME), the derived data set, promising Machine Learning algorithms, as well as the results of the implemented Machine Learning model to classify machine set-up actions.
In the last decade many different additive manufacturing (AM) technologies for metal, plastic or ceramic processing raise from research to commercialization. As a result, AM grows into different business areas and transforms structures and processes. Hence, the contribution tends to show the change in added values though the availability of different additive manufacturing technologies based on a technology screening and market research. Regarding the named purpose, a broad market research of 83 companies and 339 printer models has been conducted to find patterns of AM technology market share and regions to structure indicators such as accuracy by processed material classes with a specified AM method. Printing materials as metal, plastic, ceramic and carbon have been considered. The categorization is done by the AM principles: power bed fusion, material extrusion, vat photopolymerization and …
Eines der zentralen strategischen Ziele unserer Hochschule ist die Internationalisierung, sowie der »internationalisation@home«. Als die weltweite Corona-Pandemie die Präsenzlehre und -forschung ebenso wie den internationalen Austausch von Studierenden und Forschenden zu Beginn 2020 quasi zum Erliegen brachte wurden die Rufe nach digitalen Angeboten im internationalen Bereich schnell laut. Vor diesem Hintergrund reagierte der »Deutsche Akademische Auslandsdienst (DAAD)« mit der kurzfristig ins Leben gerufenen Förderlinie »International Virtual Academic Collaboration« (IVAC), um internationale Hochschulkooperationen und weltweite Mobilität unter digitalen Vorzeichen strategisch zu gestalten und auszubauen [1].
Mit einem Umsatz von 103 Milliarden Euro ist die Metallindustrie eine der größten deutschen Industriebranchen. Diese ist von volatilen Marktbedingungen und hohem Wettbewerb geprägt [1][2]. Kleine und mittlere produzierende Unternehmen (sogenannte KMU) sehen zunehmend gravierende Probleme bei der Einhaltung von Lieferterminen bedingt durch hohe Durchlaufzeiten in der Produktion [3]. Neben kaufmännischen Planungssystemen zur Erstellung von Produktionsplänen nutzen Unternehmen als Planungsgrundlage weiterhin Excel mit 31 % und manuelle Prozesse mit 10 % [4]. Gleiches gilt für Produktwechselvorgänge auf Maschinen (Rüsten). Aufgrund dieser Aspekte ist es notwendig, die Rentabilität der KMU in der Metallindustrie zu steigern. Das wird durch effiziente Produktionsplanung und -steuerung, sowie der daraus resultierenden hohen Reaktionsfähigkeit und Flexibilität realisiert. Daher ist die Produktionsplanung auf die Markt- und Kundenanforderungen und die Anlageneffektivität auf ein hohes und stabiles Niveau auszurichten [5]. Hier bietet die Erfassung von Echtzeitdaten eine adäquate Reaktion auf die genannten Anforderungen. Ebenfalls liefert sie großes Potenzial für die Produktionsplanung und -steuerung, um die Disposition und Koordination von Arbeitsaufträgen zu optimieren. Weiterhin werden Störgrößen oder unvorhergesehene Planungsabweichungen reduziert [4][6]. Zusätzlich ist eine erhöhte Transparenz und Verbesserung menschlicher Entscheidungsprozesse notwendig. Dies kann durch datengetriebene Methoden unterstützt und sichergestellt werden [7]. Ein Ansatz zur Optimierung des Produktionsergebnisses kann durch die Erhöhung der Anlagenproduktivität selbst realisiert werden. Dazu muss die Verfügbarkeit der Anlagen durch Lokalisierung und Reduzierung von Verlusten erhöht werden. Die Umrüstungsprozesse tragen stark negativ zur Verfügbarkeit einer Produktion bei. Eine Steigerung der Gesamtanlageneffektivität (overall equipment effectiveness oder kurz OEE) in einer Fertigungsumgebung ist jedoch möglich durch eine intelligente Nutzung von Sensordaten mit Techniken wie z. B. Machine Learning (ML).
Mit Planung ans Ziel
(2004)