The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 10
Back to Result List

Beschleunigung der Verdichterkennfeldberechnung mithilfe von Methoden des maschinellen Lernens

Acceleration of compressor map computation by utilizing machine learning techniques

  • In der heutigen Triebwerksentwicklung ist die Verwendung komplexer und zeitaufwändiger numerischer Strömungssimulationsverfahren (3D-CFD) unerlässlich. Dies gilt auch und insbesondere für den Bereich der Verdichterkennfeldberechnung, welcher viele zeitintensive 3D-CFD Berechnungen benötigt. Dabei sind zur qualitativen Beurteilung eines Verdichterentwurfs sowohl Betriebspunkte wie, Reiseflug, Start und Landung, hinreichend genau abzubilden, als auch die kritischen, den Verdichterarbeitsbereich limitierenden Betriebsgrenzen Pumpen und Sperren zu detektieren. Bisherige Arbeiten zur automatisierten Verdichterkennfeldberechnung basieren auf strukturierten Berechnungen von verschiedenen Drehzahllinien, auf welchen jeweils isoliert Pump- und Sperrgrenze gesucht werden. Durch die Beschränkung auf einzelne Drehzahlen wird jedoch nicht der gesamte Charakter des Kennfeldes erfasst, so dass unbekannte Betriebsbereiche aus linearer Interpolation abgeleitet werden müssen. Ein zusätzlicher Nachteil solcher auf einzelne Drehzahllinien fixiertenIn der heutigen Triebwerksentwicklung ist die Verwendung komplexer und zeitaufwändiger numerischer Strömungssimulationsverfahren (3D-CFD) unerlässlich. Dies gilt auch und insbesondere für den Bereich der Verdichterkennfeldberechnung, welcher viele zeitintensive 3D-CFD Berechnungen benötigt. Dabei sind zur qualitativen Beurteilung eines Verdichterentwurfs sowohl Betriebspunkte wie, Reiseflug, Start und Landung, hinreichend genau abzubilden, als auch die kritischen, den Verdichterarbeitsbereich limitierenden Betriebsgrenzen Pumpen und Sperren zu detektieren. Bisherige Arbeiten zur automatisierten Verdichterkennfeldberechnung basieren auf strukturierten Berechnungen von verschiedenen Drehzahllinien, auf welchen jeweils isoliert Pump- und Sperrgrenze gesucht werden. Durch die Beschränkung auf einzelne Drehzahlen wird jedoch nicht der gesamte Charakter des Kennfeldes erfasst, so dass unbekannte Betriebsbereiche aus linearer Interpolation abgeleitet werden müssen. Ein zusätzlicher Nachteil solcher auf einzelne Drehzahllinien fixierten Methoden ist ihre geringe Parallelisierbarkeit. Der Fokus dieser Arbeit liegt daher auf der Entwicklung eines effizienten Verfahrens zur Erfassung des gesamten Verdichterkennfeldes. Die zwei wesentlichen Anforderungen an das Verfahren sind erstens die Reduktion der Anzahl der notwendigen CFD-Berechnungen zur hinreichend genauen Beschreibung des Verdichterkennfeldes sowie zweitens die Beschleunigung jeder einzelnen 3D-CFD-Berechnung. Zu diesem Zweck wird zur Kennfeldberechnung eine Strategie vorgeschlagen, welche sich von der üblichen strukturierten Berechnung einzelner Drehzahllinien löst und stattdessen mit unstrukturierten, zufällig bestimmte Stützstellen arbeitet. Dabei wird ein zweiphasiges Verfahren entwickelt, bei dem zunächst die Pump- und Sperrlinien in ihrer Gesamtheit mit einer iterativen, hoch parallelisierbaren, auf Support-Vector-Machine beruhenden Strategie bestimmt werden. Als nächster Schritt wird mit Methoden der statistischen Versuchsplanung eine ausreichende Dichte von Stützstellen innerhalb der Betriebsgrenzen des Verdichters generiert. Abschließend werden auf Basis aller verwendeten Stützstellen Antwortflächen für Verdichterdruckverhältnis, Wirkungsgrad und Eintrittsmassenstrom aufgebaut. Zur Reduktion der Rechenzeit jeder einzelnen 3D-CFD Rechnung werden unterschiedliche Methoden zur Erzeugung von Startlösungen betrachtet. In diesem Rahmen werden Initialisierungsansätze aus reduzierten Strömungsmodellen und aus der Superposition von bereits bekannten Strömungslösungen auf Basis der Methode der Proper-Orthogonal-Decomposition (POD) untersucht. Als Validierung wird abschließend das entwickelte Verfahren zur Kennfeldberechnung in Kombination mit dem POD-Initialisierungsansatz erfolgreich auf die Analyse eines 4.5- stufigen Forschungsverdichters angewendet.show moreshow less
  • In modern-day turbo engine development, the usage of complex and time consuming numerical flow simulation methods (3D-CFD) is essential. This especially applies to compressor map computation which require many time-consuming 3D-CFD calculations. For a qualitative assessment of a compressor design, not only the operating points, such as cruise, take-off and landing, must be depicted precisely, but the critical operating limits called surge and choke must be detected. Previous investigations on the automated compressor map computation were based on structured calculations of several speed-lines, for which, each line choke and surge limits are traced separately. Due to the restriction to single speed-lines, however, the entire characteristic of the compressor map is unknown, hence unknown operation points must be derived from linear interpolation. An additional disadvantage of these speed-line based methods is their infeasibility for parallel computing. The focus of this work is on the development of an efficient process for theIn modern-day turbo engine development, the usage of complex and time consuming numerical flow simulation methods (3D-CFD) is essential. This especially applies to compressor map computation which require many time-consuming 3D-CFD calculations. For a qualitative assessment of a compressor design, not only the operating points, such as cruise, take-off and landing, must be depicted precisely, but the critical operating limits called surge and choke must be detected. Previous investigations on the automated compressor map computation were based on structured calculations of several speed-lines, for which, each line choke and surge limits are traced separately. Due to the restriction to single speed-lines, however, the entire characteristic of the compressor map is unknown, hence unknown operation points must be derived from linear interpolation. An additional disadvantage of these speed-line based methods is their infeasibility for parallel computing. The focus of this work is on the development of an efficient process for the acquisition of the entire compressor map. The two main requirements therefore are firstly a reduction of the number of necessary CFD calculations for a sufficiently precise description of the compressor map and secondly, an acceleration of every single 3D-CFD calculation. For this purpose a compressor map computation strategy is proposed, which differs from the standard structured single speed-line approach using instead an unstructured randomly determined samples approach. Hence a two-step process is being developed. In the first step, the entire surge- and choke-line is approximated with an iterative, highly parallelizable strategy based on support-vector-machine. In the second step, statistical Design of Experiments (DoE) methods are used to achieve sufficient density of samples within the operating limits of the compressor. Finally a response-surface method is used to approximate compressor map features like pressure ratio, efficiency and inlet mass flow. To reduce the computation time of each 3D-CFD calculation, different methods of flowfield initialization are considered. In this context, initialization approaches with reduced-order flow models and superposition of already known flow solutions based on the Proper-Orthogonal-Decomposition (POD) method are investigated. Finally for validation purposes the developed compressor map computation process combined with the POD-initialization approach is applied to a 4.5-stage research compressor model.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Dmitrij Ivanov
URN:urn:nbn:de:kobv:co1-opus4-53950
DOI:https://doi.org/10.26127/BTUOpen-5395
Referee / Advisor:Prof. Dr.-Ing. habil. Hon. Prof. (NUST) Dieter Bestle, Prof. Dr.-Ing. Marius Swoboda
Document Type:Doctoral thesis
Language:German
Year of Completion:2021
Date of final exam:2020/10/01
Release Date:2021/02/08
Tag:3D-CFD; Maschinelles Lernen; Strömungsfeld-Initialisierung; Support-Vector-Machine; Verdichterkennfeld
3D-CFD; Compressor map; Flowfield-initialization; Machine learning; Support-vector-machine
GND Keyword:Verdichter; Kennfeld; Numerische Strömungssimulation; Optimierung
Institutes:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Technische Mechanik und Fahrzeugdynamik
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.