• search hit 1 of 19
Back to Result List

Luminescence investigation of bulk solar silicon and silicon thin films on glass substrate

Lumineszenz-Untersuchungen von bulk-Solarsilizium und Silizium-Dünnfilmen auf Glassubstrat

  • The aim of this work is to study the optical properties of crystal defects in multicrystalline solar silicon and poly-/microcrystalline silicon thin films on glass substrate. First a setup for photoluminescence imaging on multicrystalline silicon solar wafers was developed. This system is suitable for detecting band-to-band luminescence as well as defect-related luminescence at room temperature on large-scale wafers at different stages of their processing. Spectroscopic photoluminescence investigations of multicrystalline silicon solar wafers indicated a new intense luminescence line at ≈ 0.91 eV at room temperature. The origin of this line is probably found in a specific grain boundary. Furthermore, luminescence in the region of 0.8 eV was investigated in detail, and it was found that probably oxygen is responsible for a peak at 0.77 eV at 80 K. Electroluminescence investigations at room temperature at both materials exhibit extended defect structures such as grain boundaries. Furthermore, it can be concluded thatThe aim of this work is to study the optical properties of crystal defects in multicrystalline solar silicon and poly-/microcrystalline silicon thin films on glass substrate. First a setup for photoluminescence imaging on multicrystalline silicon solar wafers was developed. This system is suitable for detecting band-to-band luminescence as well as defect-related luminescence at room temperature on large-scale wafers at different stages of their processing. Spectroscopic photoluminescence investigations of multicrystalline silicon solar wafers indicated a new intense luminescence line at ≈ 0.91 eV at room temperature. The origin of this line is probably found in a specific grain boundary. Furthermore, luminescence in the region of 0.8 eV was investigated in detail, and it was found that probably oxygen is responsible for a peak at 0.77 eV at 80 K. Electroluminescence investigations at room temperature at both materials exhibit extended defect structures such as grain boundaries. Furthermore, it can be concluded that electroluminescence imaging in reverse bias mode indicate on serious breakdown points in solar cells, which can lead to destruction of solar cells and modules. By comparing defect-related and reverse bias electroluminescence images, a difference in the spatial distribution of defects emitting D1 radiation and defects emitting light under reverse bias beyond -12 V is detectable. In addition, there seems to be a correlation in the distribution of non-doping impurities and photoluminescence. Concerning this, vertical slabs of two silicon blocks were examined by means of Fourier-transform infrared spectroscopy and photoluminescence. A correlation of the distributions of interstitial oxygen and the band-to-band luminescence profiles could be found. Additionally, a correlation between D3/D4 luminescence profile and nitrogen distribution in the blocks was observed. Finally, the growth process, particularly the transition from amorphous to microcrystalline silicon by PECVD, was studied by combined photoluminescence and Raman investigations. Formation of silicon nano-grains was detected by means of photoluminescence and Raman spectroscopy.show moreshow less
  • Das Ziel dieser Arbeit ist es, die optischen Eigenschaften von Kristalldefekten in multikristallinem Solarsilizium und poly-/mikrokristallinen Silizium-Dünnschichten auf Glas-Substrat zu studieren. Zuerst wurde ein Aufbau für Photolumineszenz-Imaging an multikristallinem Silizium-Solarwafern entwickelt. Dieses System eignet sich zur Erfassung von Band-zu-Band-Lumineszenz sowie Defekt-Lumineszenz bei Raumtemperatur großer Solarwafer nach verschiedenen Prozessschritten. Spektroskopische Photolumineszenz-Untersuchungen von multikristallinen Silizium-Solarwafern zeigte eine neue intensive Lumineszenzlinie bei ≈ 0.91 eV bei Raumtemperatur. Der Ursprung dieser Linie liegt wahrscheinlich in einer bestimmten Korngrenze. Weiterhin wurde die Lumineszenz im Bereich von 0.8 eV im Detail untersucht, und es wurde gefunden, dass wahrscheinlich Sauerstoff für einen Peak bei 0.77 eV bei 80 K verantwortlich ist. Elektrolumineszenz Untersuchungen bei Raumtemperatur an beiden Materialien zeigen ausgedehnte Defektstrukturen wie Korngrenzen. DarüberDas Ziel dieser Arbeit ist es, die optischen Eigenschaften von Kristalldefekten in multikristallinem Solarsilizium und poly-/mikrokristallinen Silizium-Dünnschichten auf Glas-Substrat zu studieren. Zuerst wurde ein Aufbau für Photolumineszenz-Imaging an multikristallinem Silizium-Solarwafern entwickelt. Dieses System eignet sich zur Erfassung von Band-zu-Band-Lumineszenz sowie Defekt-Lumineszenz bei Raumtemperatur großer Solarwafer nach verschiedenen Prozessschritten. Spektroskopische Photolumineszenz-Untersuchungen von multikristallinen Silizium-Solarwafern zeigte eine neue intensive Lumineszenzlinie bei ≈ 0.91 eV bei Raumtemperatur. Der Ursprung dieser Linie liegt wahrscheinlich in einer bestimmten Korngrenze. Weiterhin wurde die Lumineszenz im Bereich von 0.8 eV im Detail untersucht, und es wurde gefunden, dass wahrscheinlich Sauerstoff für einen Peak bei 0.77 eV bei 80 K verantwortlich ist. Elektrolumineszenz Untersuchungen bei Raumtemperatur an beiden Materialien zeigen ausgedehnte Defektstrukturen wie Korngrenzen. Darüber hinaus kann der Schluss gezogen werden, dass das Elektrolumineszenz-Imaging im Rückwärtsvorspannungs-Modus auf schwerwiegende Durchbruchstellen in Solarzellen hinweist, die zur Zerstörung von Solarzellen und Modulen führen kann. Durch Vergleich von Defektlumineszenz- und Sperrvorspannungs-Elektrolumineszenz-Bildern ist ein Unterschied in der räumlichen Verteilung der Defekte, die D1 emittieren, und der Durchbruchlumineszenz unter Sperrvorspannung über -12 V erkennbar. Außerdem gibt es Hinweise auf einen Zusammenhang bei der Verteilung von nicht-dotierenden Verunreinigungen und der Lumineszenz. Hierzu wurden vertikale Scheiben zweier Siliziumblöcke mittels Fourier-Transformations-Infrarotspektroskopie und Photolumineszenz untersucht. Eine Korrelation der Verteilung von interstitiellem Sauerstoff und den Band-zu-Band-Lumineszenz-Profilen konnte gefunden werden. Außerdem wird eine Korrelation zwischen dem D3/D4 Lumineszenzprofil und der Stickstoffverteilung in den Blöcken beobachtet. Schließlich wurde der Wachstumsprozeß, insbesondere der Übergang von amorphem zu mikrokristallinem Silizium mittels PECVD, durch Kombination der Photolumineszenz- und Raman-Methoden untersucht. Bildung von Silizium-Nanokörnern wurde mittels Photolumineszenz- und Raman-Spektroskopie detektiert.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Daniel Mankovics
URN:urn:nbn:de:kobv:co1-opus4-35196
Referee / Advisor:apl. Prof. Dr. sc. nat. Martin Kittler, Prof. Dr. rer. nat. habil. Jürgen Reif
Document Type:Doctoral thesis
Language:English
Year of Completion:2015
Date of final exam:2015/06/22
Release Date:2015/07/02
Tag:Defekte; Lumineszenz-Imaging; Photolumineszenz; Silizium; Silizium-Dünnfilme
Defects; Luminescence imaging; Photoluminescence; Silicon; Silicon thin films
GND Keyword:Silicium; Dünnschichttechnik; Solarzelle; Fehleranalyse
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Experimentalphysik und funktionale Materialien
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Experimentalphysik / Materialwissenschaften
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.