• search hit 2 of 2
Back to Result List

Graphene synthesis under Si-CMOS compatible conditions

Graphen-Synthese unter Si-CMOS-kompatiblen Bedingungen

  • Due to the unique electronic band structure, graphene has opened the great potential to extend the functionality of a large variety of graphene-based devices in health and environment, energy storage, or various microelectronic applications, to mention a few. At this point, the implementation of graphene into Silicon (Si) semiconductor technology is strongly dependent on several key challenges. Among them, high-quality and wafer-scale graphene synthesis on CMOS compatible substrates is of the highest importance. Though large-area graphene can be achieved on substrates like copper, platinum, silicon carbide, or single-crystal Ni, however, high growth temperatures, unavailability of large scale, or contamination issues are the main drawbacks of their usage. In this PhD work, 8-inch scale graphene synthesis is attempted on alternative substrates such as epitaxial Germanium on Si and polycrystalline Nickel on Si. To achieve the growth of the highest quality of graphene, this work focuses on the investigations of various nucleation andDue to the unique electronic band structure, graphene has opened the great potential to extend the functionality of a large variety of graphene-based devices in health and environment, energy storage, or various microelectronic applications, to mention a few. At this point, the implementation of graphene into Silicon (Si) semiconductor technology is strongly dependent on several key challenges. Among them, high-quality and wafer-scale graphene synthesis on CMOS compatible substrates is of the highest importance. Though large-area graphene can be achieved on substrates like copper, platinum, silicon carbide, or single-crystal Ni, however, high growth temperatures, unavailability of large scale, or contamination issues are the main drawbacks of their usage. In this PhD work, 8-inch scale graphene synthesis is attempted on alternative substrates such as epitaxial Germanium on Si and polycrystalline Nickel on Si. To achieve the growth of the highest quality of graphene, this work focuses on the investigations of various nucleation and growth mechanisms, substrate–graphene interfaces, effects of different substrate orientations, and detailed microscopic and macroscopic characterization of the grown films. Finally, it should also be stressed that the experiments in this work were carried out in a standard BiCMOS pilot-line, making this study unique, as its results might directly pave the way to further graphene integration and graphene-based device prototyping in mainstream Si technologies.show moreshow less
  • Durch seine einzigartige Bandstruktur hat Graphen ein großes Feld zur Erweiterung der Funktionalität graphenbasierter Bauelemente im Gesundheitswesens und der Umwelttechnologie, zur Speicherung von Energie, für neue Verbundstoffe und für mikroelektronischen Anwendungen, um nur Einige zu nennen, eröffnet. Gerade der Einsatz von Graphen in der siliziumbasierten Halbleitertechnologie hängt stark von einigen wesentlichen Voraussetzungen ab. Darunter ist die hohe Qualität der Abscheidung von Graphen auf CMOS-kompatiblen Substraten von größter Wichtigkeit und bisher noch nicht gelöst. Obwohl hochqualitatives Graphen auf Substraten wie Kupfer, Platin, Siliziumcarbid oder einkristallinem Nickel hergestellt werden kann, sind hohe Wachstumstemperaturen, großflächige Beschichtung oder Kontaminationen Hinderungsgründe für deren Einsatz. In der Promotionsarbeit wird die Graphenabscheidung auf alternative 200mm Substrate, wie einkristallinem Germanium auf Silizium und polykristallines Nickel auf Silizium untersucht. Um die besteDurch seine einzigartige Bandstruktur hat Graphen ein großes Feld zur Erweiterung der Funktionalität graphenbasierter Bauelemente im Gesundheitswesens und der Umwelttechnologie, zur Speicherung von Energie, für neue Verbundstoffe und für mikroelektronischen Anwendungen, um nur Einige zu nennen, eröffnet. Gerade der Einsatz von Graphen in der siliziumbasierten Halbleitertechnologie hängt stark von einigen wesentlichen Voraussetzungen ab. Darunter ist die hohe Qualität der Abscheidung von Graphen auf CMOS-kompatiblen Substraten von größter Wichtigkeit und bisher noch nicht gelöst. Obwohl hochqualitatives Graphen auf Substraten wie Kupfer, Platin, Siliziumcarbid oder einkristallinem Nickel hergestellt werden kann, sind hohe Wachstumstemperaturen, großflächige Beschichtung oder Kontaminationen Hinderungsgründe für deren Einsatz. In der Promotionsarbeit wird die Graphenabscheidung auf alternative 200mm Substrate, wie einkristallinem Germanium auf Silizium und polykristallines Nickel auf Silizium untersucht. Um die beste Wachstumsqualität von Graphen zu erreichen, ist der Fokus dieser Arbeit auf verschiedene Nukleations- und Wachstumsmechanismen, auf Graphen-Substrat wechselwirkungen, Effekte verschiedener Substratorientierung sowie detaillierter mikroskopischer und makroskopischer Charakterisierung der gewachsenen Schicht gerichtet. Abschließend sollte erwähnt werden, dass diese Experimente in einer Standardpilotlinie (BiCMOS) durchgeführt wurden, um mit den Ergebnissen dieser Arbeit den Weg zur Graphenintegration und zu graphenbasierten prototypischen Bauelementen in die industrielle Silizium-technologie zu ebnen.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Fatima AkhtarORCiD
URN:urn:nbn:de:kobv:co1-opus4-59270
DOI:https://doi.org/10.26127/BTUOpen-5927
Referee / Advisor:Prof. Dr. Christian Wenger, Prof. Dr. Jan Ingo Flege, Prof. Dr. Max Lemme
Document Type:Doctoral thesis
Language:English
Year of Completion:2022
Date of final exam:2022/04/25
Release Date:2022/09/08
Tag:CVD; Graphen; Nickel; Oxidation; Wachstum
Chemical vapor deposition; Germanium; Graphene; Growth; Oxidation
GND Keyword:Graphen; Keimbildung; Wachstum; CVD-Verfahren; Nickel; Germanium
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.