• search hit 3 of 81
Back to Result List

A new analytical design method of ultra-low-noise voltage controlled VHF crystal oscillators and it’s validation

Eine neue analytische Entwurfsmethode für spannungsgesteuerte UKW-Quarzoszillatoren mit extrem geringem Rauschen und ihre Validierung

  • The design of high Q oscillators, using Crystals at lower frequencies, (and dielectric resonators at much higher frequencies), has long been considered a black art. This may be due to the fact that a systematic approach with optimized design guideline for crystal oscillators could not be found after extensive literature search. In this dissertation, after analyzing the first crystal oscillator by W.G. Cady (1921), other high performance crystal oscillators will be discussed, analyzed and calculated. A single transistor crystal oscillator design as used by HP (Hewlett Packard) in one of their designs, the HP10811A is considered in this thesis for mathematical analysis and CAD (Computer aided Design) simulation. This was also measured on state-of-the-art signal source analyzer. After validation, this design is scaled to 100MHz, the frequency of interest for this dissertation. Though most designers use a single transistor based oscillator circuit, it is not an optimized design because of limited control over key design parametersThe design of high Q oscillators, using Crystals at lower frequencies, (and dielectric resonators at much higher frequencies), has long been considered a black art. This may be due to the fact that a systematic approach with optimized design guideline for crystal oscillators could not be found after extensive literature search. In this dissertation, after analyzing the first crystal oscillator by W.G. Cady (1921), other high performance crystal oscillators will be discussed, analyzed and calculated. A single transistor crystal oscillator design as used by HP (Hewlett Packard) in one of their designs, the HP10811A is considered in this thesis for mathematical analysis and CAD (Computer aided Design) simulation. This was also measured on state-of-the-art signal source analyzer. After validation, this design is scaled to 100MHz, the frequency of interest for this dissertation. Though most designers use a single transistor based oscillator circuit, it is not an optimized design because of limited control over key design parameters such as loop gain, dc current etc. This dissertation is an attempt to overcome the limitation due to the single transistor circuit and to give a step by step procedure, explaining the significance of a two transistor design with thorough analysis and design simulation results. This two stage transistor circuit is also not yet a best solution in terms of phase noise performance and output power, and some add-on circuitry will be needed for an optimized performance. An important contribution of this work is to show that since the voltage gain is the ratio of the collector resistor and the emitter resistor, the performance is practically independent of the VHF transistor and gives better control over various parameters of the oscillator, in order to optimize the design. A grounded-base amplifier is then introduced and added for improving the isolation and the output power. Unlike most oscillators, that take the output from the collector, a novel concept introduced by Rohde [14], is incorporated here, where the crystal is used as a filter that is then connected to the grounded base amplifier, a technique which many companies have been using. This dissertation will show that this technique increases the output power without significantly affecting the phase noise. Such a validation is needed for better understanding and as per my knowledge, has not been done so far. For the oscillator, the tuning diode sensitivity and flicker noise contribution are also taken into consideration, by calibrating the mathematics and its validation is shown. Crystal resonators of the type AT and stress-compensated (SC) cut devices will be considered as they give the best performance. The one port Colpitts type oscillator is considered first and the two port two transistor design later. Both will need a post amplifier/buffer stage. A complete step by step design procedure for an optimized 100MHz crystal oscillator is then presented. For completeness, CAD Simulation and Experimental results are provided for 10 MHz, 128 MHz and 155 MHz VCO circuits.show moreshow less
  • Die Entwicklung von Oszillatoren mit Resonatoren hoher Güte unter Verwendung von Schwingquarzen für niedrigeren Frequenzen (ebenso wie von dielektrischen Resonatoren bei viel höheren Frequenzen) wurde lange Zeit als schwarze Kunst angesehen. Dies kann daran liegen, dass ein systematischer Ansatz mit optimierter Entwurfsrichtlinien für ersten Quarz-Oszillators trotz umfangreicher Literaturrecherche nicht gefunden werden konnte. In dieser Dissertation werden nach der Analyse des ersten bekannten Quarz-Oszillators von W. G. Cady (1921) andere Hochleistung Quarz-Oszillators diskutiert, analysiert und berechnet. Der HP10811A ist ein Einzeltransistor-Quarz-Oszillator, wie von HP (Hewlett Packard) in einem ihrer Designs verwendet. In dieser Arbeit wird die die Schaltung mathematisch und mithilfe von Computer Aided Design Simulation (CAD) analysiert . Die Schaltung wurde auch mit einem Signalquellenanalysator nach dem neuesten Stand der Technik gemessen. Nach der Bestätigung der Daten wird dieses Design auf 100 MHz skaliert, die Frequenz,Die Entwicklung von Oszillatoren mit Resonatoren hoher Güte unter Verwendung von Schwingquarzen für niedrigeren Frequenzen (ebenso wie von dielektrischen Resonatoren bei viel höheren Frequenzen) wurde lange Zeit als schwarze Kunst angesehen. Dies kann daran liegen, dass ein systematischer Ansatz mit optimierter Entwurfsrichtlinien für ersten Quarz-Oszillators trotz umfangreicher Literaturrecherche nicht gefunden werden konnte. In dieser Dissertation werden nach der Analyse des ersten bekannten Quarz-Oszillators von W. G. Cady (1921) andere Hochleistung Quarz-Oszillators diskutiert, analysiert und berechnet. Der HP10811A ist ein Einzeltransistor-Quarz-Oszillator, wie von HP (Hewlett Packard) in einem ihrer Designs verwendet. In dieser Arbeit wird die die Schaltung mathematisch und mithilfe von Computer Aided Design Simulation (CAD) analysiert . Die Schaltung wurde auch mit einem Signalquellenanalysator nach dem neuesten Stand der Technik gemessen. Nach der Bestätigung der Daten wird dieses Design auf 100 MHz skaliert, die Frequenz, die für diese Dissertation von Interesse ist. Obwohl die meisten Entwickler eine Oszillatorschaltung auf Einzeltransistorbasis verwenden, handelt es sich nicht um ein optimiertes Design, da die Kontrolle über wichtige Designparameter wie Schleifenverstärkung, Gleichstrom usw. begrenzt ist. Diese Dissertation präsentiert einen Ansatz, die Einschränkung aufgrund der Einzeltransistorschaltung zu überwinden und zeigt eine schrittweise Vorgehensweise, in der die Bedeutung eines Zwei-Transistor-Entwurfs mit gründlichen Analyse- und Entwurfssimulationsergebnissen erläutert wird. Diese zweistufige Transistorschaltung ist jedoch noch nicht die optimale Lösung hinsichtlich des Phasenrauschens und der Ausgangsleistung, und für eine optimierte Leistung wird eine zusätzliche Schaltungen benötigt. Ein wichtiger Beitrag dieser Arbeit ist es zu zeigen, dass das Oszillator-Design durch eine Schaltungstopologie optimiert werden kann, bei der die Schleifen-Spannungsverstärkung durch das Verhältnis des Kollektorwiderstands zum Emitterwiderstand festgelegt ist. Dadurch werden die die Schaltung bestimmenden Parameter praktisch unabhängig vom VHF-Transistor, was eine bessere Kontrolle der Parameter des Oszillators ermöglicht. In der mathematischen Analyse des Oszillator werden auch die Empfindlichkeit der Abstimmdiode und der Beitrag des Flicker-Rauschens berücksichtigt und die Genauigkeit der Schaltungsberechnung verifiziert. Quarz-Resonatoren mit AT Schnitt und stressskompensierte (SC) Schnitte werden als die beste Lösung angesehen. Der Oszillator vom Colpitts-Typ mit einem “Tor” wird zuerst betrachtet und der Transistor mit zwei “Toren” später. Beide benötigen eine Nachverstärker- bzw. Pufferstufe. Anschließend wird ein vollständiges schrittweises Entwurfsverfahren für einen optimierten 100-MHz-Quarzoszillator vorgestellt. Der Vollständigkeit halber werden CAD-Simulations- und Versuchsergebnisse für 10-MHz-, 128-MHz- und 155-MHz-VCO-Schaltungen bereitgestellt. Abschließend wird ein Nachverstärker in Basisschaltung eingeführt, um die Isolation und die Ausgangsleistung zu verbessern. Im Gegensatz zu den meisten Oszillatoren, die den Ausgang vom Kollektor beziehen, wird hier ein innovatives Konzept von Rohde [14] benutzt, bei dem der Quarzresonator als Filter und Resonator verwendet wird, bevor es durch den Nachverstärker ausgekoppelt wird. Diese Technik wurde inzwischen von vielen Herstellern übernommen. Diese Dissertation zeigt, dass diese Schaltungstechnik die Ausgangsleistung erhöht, ohne das Phasenrauschen wesentlich zu beeinflussen. Dieser Nachweis ist zum besseren Verständnis erforderlich und wurde meines Wissens bisher noch nicht erbracht.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Anisha Apte
URN:urn:nbn:de:kobv:co1-opus4-51386
Referee / Advisor:Prof. Dr.-Ing. habil. Ulrich L. Rohde, Prof. Dr.-Ing Matthias Rudolph, Prof. PhD Klaus Buchenrieder, Prof. Dr.-Ing Ignaz Eisele
Document Type:Doctoral thesis
Language:English
Year of Completion:2020
Date of final exam:2020/02/11
Release Date:2020/03/23
Tag:Kristalloszillator; Phasenrauschen; Quarzkristall; Referenzquelle; Spannungsgesteuert
Crystal oscillator; Phase noise; Quartz crystal; Reference source; Voltage controlled
GND Keyword:Quarzoszillator; UKW; CAD
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / Stiftungsprofessur Hochfrequenz- und Mikrowellentechnik
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.