### Filtern

#### Erscheinungsjahr

- 2006 (3) (entfernen)

#### Dokumenttyp

- Zeitschriftenartikel (3) (entfernen)

#### Sprache

- Englisch (3) (entfernen)

#### Schlagworte

- Ballast mat (1)
- Finite-element method (1)
- Insertion loss (1)
- Railway track (1)
- Track dynamic (1)
- Track-soil interaction (1)
- Vehicle-track interaction (1)
- Vibration isolation (1)

Ballast mats are an efficient measure to reduce the vibrations near railway lines. The vehicle-track system gets a low eigenfrequency due to the insertion of an elastic ballast mat under the ballast. For frequencies higher than this low vehicle-track eigenfrequency, the forces, which are generating the vibration of the soil, are considerably reduced. In this contribution, a combined finite-element boundary-matrix method is used to calculate a number of completely three-dimensional track models with and without ballast mats. The influence of the important parameters such as the stiffness of the ballast mat, the unsprung vehicle mass, the mass of the track, and the stiffness of the subsoil is investigated. The numerical results are presented as the transfer functions of the total force that is acting on the soil and generating the vibration of the environment. The effectiveness of ballast mats is achieved by division of two of these force functions. The general tendencies for this insertion loss are discussed and a comparison with measurements is given. To come to an improved practical tool for the design of ballast-mat tracks, the finite-element method results are approximated by a simple two-dimensional model of which the solution is given explicitly.

The propagation of waves through homogeneous or layered soil is calculated based on half-space theory. The moving dynamic loads of a train are approximated by fixed dynamic loads and the wave field can be calculated if the spectrum of the dynamic train loads is known. In addition to this dynamic wave field, there are three different components at three different frequency ranges which are caused by the passage of the static loads:
the regular static component at low frequencies,
the irregular static component at medium frequencies,
the sleeper-passing component at high frequencies.
For each of these components, an approximate solution is presented. The calculated wave field is compared with measurements of different trains at different sites. The measurement of impulse and harmonic point load excitation verifies the soil dynamic base of the method.