Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (19235)
- Zeitschriftenartikel (17614)
- Posterpräsentation (6034)
- Beitrag zu einem Tagungsband (5890)
- Beitrag zu einem Sammelband (2313)
- Forschungsbericht (747)
- Sonstiges (376)
- Buchkapitel (346)
- Dissertation (288)
- Zeitschriftenheft (Herausgeberschaft für das komplette Heft) (207)
Sprache
- Deutsch (30131)
- Englisch (23029)
- Mehrsprachig (189)
- Französisch (40)
- Russisch (29)
- Spanisch (21)
- Ungarisch (11)
- Tschechisch (7)
- Italienisch (7)
- Japanisch (5)
Schlagworte
- Korrosion (411)
- Corrosion (397)
- Concrete (376)
- Fluorescence (327)
- Nanoparticles (319)
- Additive manufacturing (268)
- LIBS (241)
- Simulation (241)
- Zerstörungsfreie Prüfung (239)
- XPS (230)
Organisationseinheit der BAM
- 8 Zerstörungsfreie Prüfung (2519)
- 6 Materialchemie (2375)
- 7 Bauwerkssicherheit (2066)
- 1 Analytische Chemie; Referenzmaterialien (2049)
- 9 Komponentensicherheit (1499)
- 4 Material und Umwelt (1212)
- 5 Werkstofftechnik (1212)
- 3 Gefahrgutumschließungen; Energiespeicher (894)
- 2 Chemische Sicherheitstechnik (671)
- 6.3 Strukturanalytik (664)
Paper des Monats
- ja (21)
Understanding the fundamentals of bioreceptivity enables the developement of functionalized materials. Concrete as the most used building material worldwide is of special interest as microbially greened panels may represent an alternative to classic façade greening with plants.
As standards are not ye established, material characterization in context as well as bioreceptivity assessment itself has been proven to be difficult. The presentation reviews first results of methods adapted for this application.
Monopile-Gründungen sind die mit Abstand am häufigsten verwendete Gründungskonstruktion für Offshore-Windenergieanlagen. Ein wesentliches Problem bei der Bemessung ist das lokale Beulen des Gründungspfahls, welches typischerweise im Bereich der Bettung auftritt. Aufgrund der Nichtlinearität der Bettungsrandbedingung sind klassische Bemessungsansätze nicht anwendbar, so dass der Bemessungsingenieur auf eine vollständig numerische Berechnung zurückgreifen muss. In diesem Vortrag wird eine experimentelle Versuchskampagne zur Erzeugung von Kalibrierungsdaten für solche numerischen Modelle vorgestellt. Eine ausführlichere Darstellung findet sich im gleichnamigen Artikel.
Die BAM ist zuständige Behörde in Deutschland für bestimmte Aufgaben im Gefahrgutbereich, die u. a. in § 8 der Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt (GGVSEB) und § 12 der Gefahrgutverordnung See (GGVSee) aufgeführt sind und hauptsächlich von den Abteilungen 2 und 3 wahrgenommen werden. So ist die BAM bspw. die in Deutschland für die Zulassung von Verpackungen und Tanks oder auch die Einstufung bestimmter gefährlicher Güter zuständige Stelle. Die BAM arbeitet des Weiteren als Kompetenzbehörde national und international in den entsprechenden Gremien mit und berät das BMDV in der Rechtsfortentwicklung der internationalen Vorschriften für den Gefahrguttransport. Dies geschieht u. a. durch die Mitarbeit im Ständigen Ausschuss Gefahrgutbeförderung (AGGB) des Gefahrgut-Verkehrs-Beirats beim BMDV und den zugehörigen Arbeitsgruppen, oder auch das Erstellen von Anträgen für Rechtsänderungen in den internationalen Vorschriften der Vereinten Nationen (UN) bzw. der Wirtschaftskommission für Europa der UN (UNECE) im Auftrag des BMDV. Die Beratung der betroffenen Wirtschaft und die Normungsarbeit sind weitere wichtige Themen. Die Expertise der BAM wird insbesondere durch Forschung im Gefahrgutbereich erhalten und weiter ausgebaut. Im Rahmen des Vortrags werden drei Forschungsbereiche vorgestellt, von denen zwei für die Energiewende von großer Bedeutung sind.
Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores (less than1 µm), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption.
In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany.
The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. These effects are prominent in the meso-pore range and might significantly alter the effective diffusion coefficient.
The bond between polymer fibers and the surrounding cementitious matrix is essential for the development of concrete reinforcement. The single fiber pull-out test (SFPT) is the standard characterization technique for testing the bond strength. However, the different phases of debonding cannot be distinguished by the SFPT. This study investigates the debonding of different polymer fibers from the surrounding cementitious matrix with a modified SFPT and proposes methods to change the SFPT setup to generate more valuable information on the debonding mechanism. The SFPT was equipped with linear variable differential transformers (LVDT), digital image correlation (DIC) and acoustic emission (AE) analysis. The results demonstrate that the modified SFPT allows a better understanding of the different phases of debonding during fiber pull-out. Furthermore, bond strength values calculated by different methods reveal that the chemical bond of the investigated polymers is not different as reported by previous studies. Deformation measurements performed using LVDTs and DIC are suitable measuring techniques to characterize the debonding mechanism in SFPT. A correlation between recorded AE and debonding phases was not found.
Die additive Fertigung (AM) durch schweißtechnische Verfahren eröffnet vielfach ökonomische Vorteile für eine ressourceneffiziente Bauteilherstellung. Gerade hinsichtlich der Homogenität und Anisotropie der resultierenden Schweißgefüge und den damit verbundenen Eigenschaften gibt es noch offene Fragestellungen. Die Einstellung der finalen Bauteilgeometrie und Oberflächengüte erfordert den komplementären Einsatz abtragender Fertigungsschritte. Hochleistungslegierungen auf der Basis von Nickel oder Kobalt sind aufgrund ihrer niedrigen Wärmeleitfähigkeit verbunden mit hoher Festigkeit und Zähigkeit schwer spanbar. Eine gezielte Gefügebeeinflussung mittels Modifikation der AM-Schweißzusatzwerkstoffe und der Einsatz des ultraschallunterstützten Fräsens (US) bietet das Potential insgesamt die Zerspanungssituation zu verbessern. Dieser Lösungsansatz unter Gewährleistung des Erhalts der geforderten Werkstoff- bzw. Bauteileigenschaften ist Untersuchungsgegenstand eines Gemeinschaftsvorhabens (IGF-Nr. 20.979 N/DVS-Nr. 1.3211) der BAM und TU Clausthal/ISAF. Der vorliegende Beitrag stellt Ergebnisse für die beiden untersuchten FeNi- und CoCr-Legierungen sowie wesentliche Zusammenhänge zwischen Legierungsmodifikation, entstehender Gefügemorphologie und Zerspanungseigenschaften der mittels MAG additiv gefertigter Proben vor. Das größte Potential für die Modifikation zeigten Zr und Hf. Die Zulegierung in das Schweißgut erfolgte durch Beschichtung von Massivdrähten sowie durch Herstellung von Fülldrähten.
Knowing phonon properties is beneficial for predicting low thermal conductivity thermoelectric materials. Employing DFT consumes lots of computational resources. Using ML-driven interatomic potentials (MLIP, e.g., GAP) opens up a faster route, but most potentials are specifically tailored to a certain compound. We aim to generalize the MLIP generation in a Python code-based workflow, combining automatic DFT runs with automated GAP fits. Automation enables easier tests, benchmarks, and validation.
Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, experimentalists have found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TQ6 (T = Si, Ge, Ti and Sn; Q = S, Se), finding a relationship between the anharmonicity and low thermal conductivity.
Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder.
Through a hybrid use of Low Transforamtion Temperature welding filler, fatigue strength of welds should be increased. Through the hybrid use of LTT welding filler the Integrity of a weld will be less affected. By creating several variants of LTT weld geometries an idea of the optimum residual stress reduction is given.