• Treffer 21 von 68
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-313610

Innovative numerische Methoden zur Simulation geführter Ultraschallwellen

  • Geführte Ultraschallwellen bieten eine Vielzahl von Einsatzmöglichkeiten in der Zerstörungsfreien Prüfung, der Zustandsüberwachung sowie der Materialcharakterisierung. Insbesondere für Rohrleitungen und ausgedehnte Plattenstrukturen ist eine Vielzahl von auf geführten Wellen basierenden Verfahren in der Entwicklung und teilweise bereits im Einsatz. Aufgrund des komplexen Ausbreitungsverhaltens geführter Wellen werden numerische Verfahren (etwa die Finite Elemente Methode (FEM) oder die Randelementemethode (BEM)) zur Simulation der Wellenausbreitung sowie der Wechselwirkung mit Defekten in Wellenleitern angewendet. Diese Methoden sind für große Strukturen extrem rechenintensiv und umständlich in der Anwendung. Ein ungleich effizienteres Verfahren wurde kürzlich von den Autoren auf Grundlage der Scaled Boundary Finite Element Method entwickelt. Ein semi-analytischer Ansatz erlaubt die Modellierung beliebig ausgedehnter Strukturen bei extrem kurzen Rechenzeiten. Die WechselwirkungGeführte Ultraschallwellen bieten eine Vielzahl von Einsatzmöglichkeiten in der Zerstörungsfreien Prüfung, der Zustandsüberwachung sowie der Materialcharakterisierung. Insbesondere für Rohrleitungen und ausgedehnte Plattenstrukturen ist eine Vielzahl von auf geführten Wellen basierenden Verfahren in der Entwicklung und teilweise bereits im Einsatz. Aufgrund des komplexen Ausbreitungsverhaltens geführter Wellen werden numerische Verfahren (etwa die Finite Elemente Methode (FEM) oder die Randelementemethode (BEM)) zur Simulation der Wellenausbreitung sowie der Wechselwirkung mit Defekten in Wellenleitern angewendet. Diese Methoden sind für große Strukturen extrem rechenintensiv und umständlich in der Anwendung. Ein ungleich effizienteres Verfahren wurde kürzlich von den Autoren auf Grundlage der Scaled Boundary Finite Element Method entwickelt. Ein semi-analytischer Ansatz erlaubt die Modellierung beliebig ausgedehnter Strukturen bei extrem kurzen Rechenzeiten. Die Wechselwirkung geführter Wellen mit Rissen kann auf besonders elegante und exakte Weise beschrieben werden. Mit dieser Methode können die komplexen Vorgänge in Wellenleitern innerhalb weniger Sekunden modelliert werden.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Hauke Gravenkamp, C. Song
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Deutsch
Titel des übergeordneten Werkes (Deutsch):DGZfP-Jahrestagung 2014 (Proceedings)
Jahr der Erstveröffentlichung:2014
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP)
Ausgabe/Heft:DGZfP-BB 148
Erste Seite:Poster 66, 1
Letzte Seite:6
Veranstaltung:DGZfP-Jahrestagung 2014
Veranstaltungsort:Potsdam, Germany
Beginndatum der Veranstaltung:26.04.2014
Enddatum der Veranstaltung:28.05.2014
URN:urn:nbn:de:kobv:b43-313610
ISBN:978-3-940283-61-0
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.