• Treffer 51 von 217
Zurück zur Trefferliste

The influence of thermal-stressing (up to 1000 °C) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete

  • High-strength concrete (HSC) will experience thermal microcracking, explosive spalling, and undesirable chemical changes when exposed to high temperatures, such as during fire, engulfment by lava flow, or nuclear meltdown. Knowledge of the resultant changes in mechanical, physical, and chemical properties is paramount for hazard mitigation. We present a multidisciplinary study on the influence of thermal-stressing on HSC. Our study shows that thermal microcracking in HSC initiates at 180 °C, is more prevalent during cooling, and exhibits the Kaiser 'temperature-memory' effect. We show that residual compressive strength, indirect tensile strength, ultrasonic wave velocities, and Young’s modulus and Poisson’s ratio decrease, whilst porosity and permeability increase with increasing temperature. We discuss these data in terms of the chemical changes during thermal-stressing, provided by thermo-gravimetric analysis, differential scanning calorimetry, and X-ray diffraction, and from opticalHigh-strength concrete (HSC) will experience thermal microcracking, explosive spalling, and undesirable chemical changes when exposed to high temperatures, such as during fire, engulfment by lava flow, or nuclear meltdown. Knowledge of the resultant changes in mechanical, physical, and chemical properties is paramount for hazard mitigation. We present a multidisciplinary study on the influence of thermal-stressing on HSC. Our study shows that thermal microcracking in HSC initiates at 180 °C, is more prevalent during cooling, and exhibits the Kaiser 'temperature-memory' effect. We show that residual compressive strength, indirect tensile strength, ultrasonic wave velocities, and Young’s modulus and Poisson’s ratio decrease, whilst porosity and permeability increase with increasing temperature. We discuss these data in terms of the chemical changes during thermal-stressing, provided by thermo-gravimetric analysis, differential scanning calorimetry, and X-ray diffraction, and from optical microscopic analysis of thermally-stressed samples. We provide implications for thermally-damaged HSC structures and a new method for non-destructive monitoring.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S0950061813000846-main.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:M.J. Heap, Y. Lavallée, A. Laumann, K.-U. Hess, P.G. Meredith, D.B. Dingwell, Sven Huismann, Frank WeiseORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Construction and building materials
Jahr der Erstveröffentlichung:2013
Verlag:Elsevier Ltd.
Verlagsort:Amsterdam
Jahrgang/Band:42
Erste Seite:248
Letzte Seite:265
Freie Schlagwörter:Acoustic emissions; Elastic moduli; Fire; High strength concrete; Indirect tensile strength; Physical properties; Thermal-stressing; Thermo-gravimetric analysis; Uniaxial compressive strength; X-ray diffraction
DOI:10.1016/j.conbuildmat.2013.01.020
ISSN:0950-0618
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:10.04.2013
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.