• Treffer 4 von 6
Zurück zur Trefferliste

Using the combination of phosphorus polymers and nanocomposite concept to tailor the flame retardancy of polyesters

  • The potential of nanocomposites, i.e. mixtures of nanoobjects with acceptable distribution in a polymer matrix, with respect to flame retardancy was discovered in an already early stage of nanocomposite reseach. Since then, a variety of nanocomposites often in combination with conventional flame retardants (FRs) and their effect on the burning behavior has been described. Here, we show the application of this concept to enhance the flame retardancy of poly(butylene terephthalate) (PBT) and poly(butylene succinate) (PBS) using suitable phosphorus-containing polyesters as FR. The materials studied were prepared by melt compounding in a twin screw extruder using either a mixture of polymer matrix, phosphorus polymer and nanomaterial (direct compounding) or a mixture of a pre-formed batch of phosphorus polymer with nanomaterial and the polymer matrix (batch compounding). The second method has been shown to be very effective if batches prepared by in-situ nanocomposite synthesis viaThe potential of nanocomposites, i.e. mixtures of nanoobjects with acceptable distribution in a polymer matrix, with respect to flame retardancy was discovered in an already early stage of nanocomposite reseach. Since then, a variety of nanocomposites often in combination with conventional flame retardants (FRs) and their effect on the burning behavior has been described. Here, we show the application of this concept to enhance the flame retardancy of poly(butylene terephthalate) (PBT) and poly(butylene succinate) (PBS) using suitable phosphorus-containing polyesters as FR. The materials studied were prepared by melt compounding in a twin screw extruder using either a mixture of polymer matrix, phosphorus polymer and nanomaterial (direct compounding) or a mixture of a pre-formed batch of phosphorus polymer with nanomaterial and the polymer matrix (batch compounding). The second method has been shown to be very effective if batches prepared by in-situ nanocomposite synthesis via melt transesterification polycondensation were employed. Modified organoclay (montmorillonite, OMMT) as well as multiwalled carbon nanotubes were used as nanoobjects. Organic modification of MMT resulted in better exfoliation and distribution within the poylmer matrix than observed with pure sodium MMT. However, modification with phosphorus-containing modifiers dis not support exfoliation due to high interaction between modifier and clay. Analysis of the in-situ prepared nanocomposites of OMMT (Cloisite 30B) with the phosphorus polyester PET-P-DOPO by thermogravimetry, FTIR and pyrolysis-GC/MS showed that OMMT did not alter the principal decomposition pathway of the polyester, but shifted the onset of decomposition to lower temperature (due to the fast decomposition of the tertiary ammonium compound) and increased the amount of char. The fire behavir as observed by microscale combustion calorimetry (MCC) was altered and resulted in significant decrease of heat release capacity. In-situ prepared batches of the phosphorus polyester PET-P-DOPO with 20 wt.-% OMMT and with MWCNT (1 wt.-%) were blended with PBT in the ratio 25/75 wt/wt to achieve a phosphorus concentration of 1.5 wt.-%. The nanocomposites were injection molded into plates for cone calorimeter measurements and examined using 50 kW/m2. In all samples, a reduction of toral heat evolved and total heat evolved/total mass loss (THE/TML) was observed. Addition of OMMT improved the char, which was even more pronounced in combination with PET-P-DOPO as illustrated in Figure 1. Blends containing PET-P-DOPO additionally showed intumescence. In all cases, a significant reduction of FIGRAmax was obtained. The addition of nanomaterials (both OMMT and MWCNT) to PBT/PET-P-DOPO reduced the effective heat of combustion (THE/TML) from 1.7 to 1.5 MJ/m2.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster Manchester 2017 korwitz.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Korwitz
Koautor*innen:D. Pospiech, B. Kretzschmar, Dominik Vollmerhausen, Bernhard Schartel
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Flame retardancy; Nanocomposite; Phosphorus polymers
Veranstaltung:FRPM 2017, 16th European Meeting on Fire Retardant Polymeric Materials
Veranstaltungsort:Manchester, UK
Beginndatum der Veranstaltung:03.07.2017
Enddatum der Veranstaltung:06.07.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.07.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.