• Treffer 88 von 111
Zurück zur Trefferliste

Influence of material properties of stainless steel on the ignition probability of flammable gas mixtures due to mechanical impacts

  • In industrial applications carbon steel is often replaced by stainless steel. Stainless steel is supposed to be less problematic than carbon steel as a possible ignition source because of the decreasing oxidizability of stainless steel particles with increasing content of alloying elements such as chromium. However, knowledge about the ignition probabilities and about factors influencing ignitions are far from being sufficient. Better knowledge could well be used to decrease and minimize explosion hazards. Additionally, adequate risk assessment could lead to cost reduction by avoiding possible overestimation of hazards. In this contribution, we present results of grazing impact experiments using four different stainless steels in acetylene-, hydrogen-, ethylene- and propane-air mixtures. We investigated the influence of the chromium content and of some of the material properties of stainless steel on the ignition probabilities of these gas mixtures. The experiments show an appreciableIn industrial applications carbon steel is often replaced by stainless steel. Stainless steel is supposed to be less problematic than carbon steel as a possible ignition source because of the decreasing oxidizability of stainless steel particles with increasing content of alloying elements such as chromium. However, knowledge about the ignition probabilities and about factors influencing ignitions are far from being sufficient. Better knowledge could well be used to decrease and minimize explosion hazards. Additionally, adequate risk assessment could lead to cost reduction by avoiding possible overestimation of hazards. In this contribution, we present results of grazing impact experiments using four different stainless steels in acetylene-, hydrogen-, ethylene- and propane-air mixtures. We investigated the influence of the chromium content and of some of the material properties of stainless steel on the ignition probabilities of these gas mixtures. The experiments show an appreciable amount of ignitions in the acetylene-air and the hydrogen-air mixture only. The observed source of ignition depends on the chromium content of the steel. At impact energies of 126 J and more, acetylene-air mixtures were ignited by hot surfaces resulting from impacts between stainless steel components containing 22.5 % chromium whereas separated and subsequently oxidized particles acted as ignition source after impacts of stainless steel containing 17.7 % chromium and less. These observations are in accordance with the decreasing oxidizability of stainless steel with increasing chromium content. However, an exclusive correlation between chromium content and ignition probability was not found. Almost all ignitions of hydrogen-air were initiated by hot surfaces and impacts of steel containing the highest amount of chromium were most incendive. This observation shows that a low oxidizability of the steel due to its high chromium content does not necessarily lead to a lower ignition probability. Quite contrary, an increasing chromium content leads to a decreasing thermal conductivity and thus to a higher ignition probability. As a result the thermal con-ductivity was found to be a key parameter determining the ignition probability. The density, specific heat capacity and hardness of the steel were also taken into account; however, they did not affect the ignition probability. In conclusion, the different sources of ignition can be distinguished with regard to the resulting ignition probability of flammable gas mixtures subjected to grazing impacts of stainless steel. In cases where the ignitions are initiated by hot surfaces, the thermal conductivity of the impacting steel is the most critical parameter. On the other hand, the temperature increase due to impacts and the propensity of the steel to be oxidized mainly influence the ignition probability in cases where separated particles act as ignition source. Consequently, stainless steel with a high thermal conductivity and a low oxidizability has to be utilized in order to minimize the ignition probability due to mechanical impacts.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Loss_Prevention_2016_Graetz.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Rainer Grätz
Koautor*innen:Lars Holländer, Thomas Grunewald
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:explosion protection; explosive atmospheres; ignition protection; mechanically generated sparks
Veranstaltung:15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries
Veranstaltungsort:Freiburg, Germany
Beginndatum der Veranstaltung:05.06.2016
Enddatum der Veranstaltung:08.06.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.09.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.