• Treffer 8 von 8
Zurück zur Trefferliste

Numerical correction of X-ray detector backlighting

  • A novel approach to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background signals ('backlighting') of 2D X-ray detectors is suggested. Depending on the detector geometry the mechanism may be different, either based on the optical scattering by the fluorescent screen materials into optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert–Beer's law in single projections (radiographs). When used as input data for computed tomography these violations are directly observed via modulation of the projected mass as a function of the rotation phase and the sample’s aspect ratio (dynamics). The magnitude of the diffuse background signal depends on the detector area covered by the projected sample. They are more pronounced the smaller the shadowed area and the stronger the total attenuation. ThisA novel approach to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background signals ('backlighting') of 2D X-ray detectors is suggested. Depending on the detector geometry the mechanism may be different, either based on the optical scattering by the fluorescent screen materials into optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert–Beer's law in single projections (radiographs). When used as input data for computed tomography these violations are directly observed via modulation of the projected mass as a function of the rotation phase and the sample’s aspect ratio (dynamics). The magnitude of the diffuse background signal depends on the detector area covered by the projected sample. They are more pronounced the smaller the shadowed area and the stronger the total attenuation. This implies that the reconstruction suffers from additional anisotropic artifacts caused by elongated sample structures. This issue is studied simply by absorption of flat plates in a conventional laboratory radiography set-up and at a synchrotron radiation facility. In the latter case beam hardening artifacts can be excluded due to the monochromatic radiation. The proposed correction procedure requires simple integral intensity offsets as a constant (non-local) light scattering mechanism is assumed.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Axel Lange, Manfred P. Hentschel, Andreas KupschORCiD, Bernd R. MüllerORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):International journal of materials research
Jahr der Erstveröffentlichung:2012
Herausgeber (Institution):Deutsche Gesellschaft für Materialkunde
Verlag:Carl Hanser
Verlagsort:München
Jahrgang/Band:103
Ausgabe/Heft:2
Erste Seite:174
Letzte Seite:178
Freie Schlagwörter:Computed tomography; Detector backlighting; Diffuse background; Fluorescent screen; X-ray detector scattering
DOI:10.3139/146.110659
ISSN:1862-5282
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:08.03.2012
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.