• Treffer 4 von 5
Zurück zur Trefferliste

Experimental results from heavy gas dispersions (R134a)

  • Heavy gases in large quantities are used worldwide in various industries. Past incidents, such as the liquefied gas disaster in Viareggio (2009) have shown that these materials are difficult to handle in a safe manner. According to the German Hazardous Incident Ordinance (StörfallVO 2000 - 12. BIMSchV), plant operators with extended responsibilities must produce a report in which they verify that , in the event of an unintentional gas release, the surrounding area will not be aversely affected. Essential elements of this report are calculations of both the released mass flow and the gas dispersion. Using models such as the VDI guideline 3783 (state of the art in Germany) plant operators are able to predict the characteristics of likely gas dispersions. The presented experimental investigations were carried out at the BAM better understand heavy gas dispersion with high gas concentrations in the air (≥ 1 Vol.-%), as well as concentrations with approximately neutral densityHeavy gases in large quantities are used worldwide in various industries. Past incidents, such as the liquefied gas disaster in Viareggio (2009) have shown that these materials are difficult to handle in a safe manner. According to the German Hazardous Incident Ordinance (StörfallVO 2000 - 12. BIMSchV), plant operators with extended responsibilities must produce a report in which they verify that , in the event of an unintentional gas release, the surrounding area will not be aversely affected. Essential elements of this report are calculations of both the released mass flow and the gas dispersion. Using models such as the VDI guideline 3783 (state of the art in Germany) plant operators are able to predict the characteristics of likely gas dispersions. The presented experimental investigations were carried out at the BAM better understand heavy gas dispersion with high gas concentrations in the air (≥ 1 Vol.-%), as well as concentrations with approximately neutral density characteristics (≤ 3000ppm) in order to test the accuracy of the VDI guideline. The starting point for experimental trials was the heavy gas releases resulting from pipeline, vessel or standard gas bottle leaks, with mass flows of between 20 and 100 g s-1. Investigations on the gas-phase release process focused on the unsteady mass flow associated with releases from standard gas bottles. The experimental results will be used as comparative parameters for future simulations. The goal of these simulations is to develop a model with which calculation of the unsteady mass flow, based on the material characteristics for any gas, is possible.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Experimental Results from Heavy Gas Dispersions.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christian Rauchegger, Bernd Schalau, Dirk Schmidt, Volkmar Lohse, Volkmar Schröder, D. Thévenin
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):7th Global congress on process safety - GCPS 2011 Spring meeting
Jahr der Erstveröffentlichung:2011
Herausgeber (Institution):American Institute of Chemical Engineers
Erste Seite:1
Letzte Seite:12
Freie Schlagwörter:Dispersion; Gas releases; Heavy gas; Measurement; VDI guideline 3783
Veranstaltung:7th Global congress on process safety - 2011 Spring meeting
Veranstaltungsort:Chicago, Illinois, USA
Beginndatum der Veranstaltung:13.03.2011
Enddatum der Veranstaltung:16.03.2011
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.