• Treffer 3 von 9
Zurück zur Trefferliste

Friction and wear studies of polyetherimide composites under oscillating sliding condition against steel cylinder

  • Tribological properties of neat polyetherimide (PEI), glass, carbon fiber, and solid lubricants filled PEI composites are presented in this article. The aim of this study was to investigate the friction and wear properties of these composites under dry oscillating sliding condition at room temperature (RT) as well as at elevated temperature (120 °C). The polymer specimens were made to oscillate against steel cylinder as a counterpart. The friction and wear properties of PEI and composites were strongly influenced by the temperature. Incorporation of carbon fiber in the PEI matrix has increased the wear rate at RT, while at elevated temperature this trend was opposite. Abrasive action of carbon fibers has severely damaged the counterpart and resulted in accelerated wear of the composite at RT. Solid lubricants filled (PTFE, MoS2, graphite) along with glass fiber is beneficial in improving the friction and wear performance of the PEI composite at RT, whereas at elevated temperature wearTribological properties of neat polyetherimide (PEI), glass, carbon fiber, and solid lubricants filled PEI composites are presented in this article. The aim of this study was to investigate the friction and wear properties of these composites under dry oscillating sliding condition at room temperature (RT) as well as at elevated temperature (120 °C). The polymer specimens were made to oscillate against steel cylinder as a counterpart. The friction and wear properties of PEI and composites were strongly influenced by the temperature. Incorporation of carbon fiber in the PEI matrix has increased the wear rate at RT, while at elevated temperature this trend was opposite. Abrasive action of carbon fibers has severely damaged the counterpart and resulted in accelerated wear of the composite at RT. Solid lubricants filled (PTFE, MoS2, graphite) along with glass fiber is beneficial in improving the friction and wear performance of the PEI composite at RT, whereas at elevated temperature wear performance was deteriorated. Tribological performance of neat PEI and glass fiber composite was similar with each other at RT. Scanning electron micrographs and optical micrographs of the worn polymer specimens and the steel cylinders was used to study the possible wear mechanisms. The present test results were also compared with data available on the reciprocating wear of PEI and composites in the literature and trends have been reported.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Harsha_et_al-2017-Polymer_Composites.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A.P. Harsha, Rolf WäscheORCiD, Manfred Hartelt
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Polymer composites
Jahr der Erstveröffentlichung:2015
Verlag:Society of Plastics Engineers
Verlagsort:Manchester, NH
Jahrgang/Band:38
Ausgabe/Heft:1
Erste Seite:48
Letzte Seite:60
DOI:10.1002/pc.23559
ISSN:0272-8397
ISSN:1548-0569
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:23.11.2015
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.