Revealing the Inner Secrets of Intumescent Coatings: An Advanced Bench-scale Approach

  • Intumescent coatings are used for decades to increase the fire resistance of steel or wood constructions. Intermediate and full scale tests are used to assess their protection performance. For the product development and screening, cheaper and faster bench-scale tests are demanded that provide information about thermal protection, foaming dynamics and mechanical resistance. In the recent years, we have developed several bench-scale fire resistance tests and used them in different research and developing projects. The influence of distinct binders and fillers, respectively, was studied in intumescent coatings using the Standard Time Temperature modified muffle furnace (STT Mufu+). This bench-scale test evaluates the fire resistance (by means of temperature measurements) and the foaming behaviour (by means of a high-temperature endoscope) during a standard time-temperature exposure. The fire residues were suitable for advance residue analysing techniques like nondestructive μ-computedIntumescent coatings are used for decades to increase the fire resistance of steel or wood constructions. Intermediate and full scale tests are used to assess their protection performance. For the product development and screening, cheaper and faster bench-scale tests are demanded that provide information about thermal protection, foaming dynamics and mechanical resistance. In the recent years, we have developed several bench-scale fire resistance tests and used them in different research and developing projects. The influence of distinct binders and fillers, respectively, was studied in intumescent coatings using the Standard Time Temperature modified muffle furnace (STT Mufu+). This bench-scale test evaluates the fire resistance (by means of temperature measurements) and the foaming behaviour (by means of a high-temperature endoscope) during a standard time-temperature exposure. The fire residues were suitable for advance residue analysing techniques like nondestructive μ-computed tomography (μ-CT). Also, scanning electron microscopy was used to investigate the microscopic structure of the surface and inside of the residues. The mechanical resistance of the residues was tested by an impact resistance experiment. The binder influence on the insulation of the coating was small for the investigated systems. Nevertheless, it was interestingly noted, that coatings with high expansion did not provide the best protection. The great influence of the binder material on the inner structure of the foamed residues was revealed by the μ-CT images. Clear differing morphologies were observed. These led to distinct mechanical resistance properties of the tested coatings. Also the change of a low amount of fillers, such as fibres and clay was investigated with similar effects. What is more, a transition of the residue from black, carbonaceous foam with closed cells into an inorganic, residual open cell sponge occurs at high temperatures during the test. This transition is due to the loss of carbon; the change in microstructure is analysed by scanning electron microscopy. The bench-scale tool presented outreaches screening; the investigation based on the STT Mufu+ delivers a deeper understanding of the phenomena controlling the performance of intumescent coatings.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Schartel_EUR_COAT.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Bernhard SchartelORCiD
Koautor*innen:Michael Morys
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Bench-scale; Coating; Fire resistance; Intumescence; MuFu+; STT
Veranstaltung:European Coatings Fire Forum, High-Performance Fire Retardant Coatings
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:17.10.2017
Enddatum der Veranstaltung:18.10.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.10.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.