## 05C38 Paths and cycles [See also 90B10]

### Refine

#### Document Type

- ZIB-Report (6)

#### Language

- English (6)

#### Has Fulltext

- yes (6)

#### Is part of the Bibliography

- no (6)

#### Keywords

#### Institute

In this paper, we study self-avoiding walks of a given length on a graph. We consider a formulation of this problem as a binary linear program. We analyze the polyhedral structure of the underlying polytope and describe valid inequalities. Proofs for their facial properties for certain special cases are given. In a variation of this problem one is interested in optimal configurations, where an energy function measures the benefit if certain path elements are placed on adjacent vertices of the graph. The most prominent application of this problem is the protein folding problem in biochemistry. On a set of selected instances, we demonstrate the computational merits of our approach.

Given a combinatorial optimization problem and a subset $N$ of natural numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of $N$. In this paper we briefly touch on questions that addresses common grounds and differences of the complexity of a combinatorial optimization problem and its cardinality constrained version. Afterwards we focus on polytopes associated with cardinality constrained combinatorial optimization problems. Given an integer programming formulation for a combinatorial optimization problem, by essentially adding Grötschel's cardinality forcing inequalities, we obtain an integer programming formulation for its cardinality restricted version. Since the cardinality forcing inequalities in their original form are mostly not facet defining for the associated polyhedra, we discuss possibilities to strengthen them.

We consider polytopes associated with cardinality constrained path and cycle problems defined on a directed or undirected graph. We present integer characterizations of these polytopes by facet defining linear inequalities for which the separation problem can be solved in polynomial time. Moreover, we give further facet defining inequalities, in particular those that are specific to odd/even paths and cycles.

In this paper, we discuss the relation of unsplittable shortest path routing (USPR) to other routing schemes and study the approximability of three USPR network planning problems. Given a digraph $D=(V,A)$ and a set $K$ of directed commodities, an USPR is a set of flow paths $\Phi_{(s,t)}$, $(s,t)\in K$, such that there exists a metric $\lambda=(\lambda_a)\in \mathbb{Z}^A_+$ with respect to which each $\Phi_{(s,t)}$ is the unique shortest $(s,t)$-path. In the \textsc{Min-Con-USPR} problem, we seek for an USPR that minimizes the maximum congestion over all arcs. We show that this problem is hard to approximate within a factor of $\mathcal{O}(|V|^{1-\epsilon})$, but easily approximable within min$(|A|,|K|)$ in general and within $\mathcal{O}(1)$ if the underlying graph is an undirected cycle or a bidirected ring. We also construct examples where the minimum congestion that can be obtained by USPR is a factor of $\Omega(|V|^2)$ larger than that achievable by unsplittable flow routing or by shortest multi-path routing, and a factor of $\Omega(|V|)$ larger than by unsplittable source-invariant routing. In the CAP-USPR problem, we seek for a minimum cost installation of integer arc capacities that admit an USPR of the given commodities. We prove that this problem is $\mathcal{NP}$-hard to approximate within $2-\epsilon$ (even in the undirected case), and we devise approximation algorithms for various special cases. The fixed charge network design problem \textsc{Cap-USPR}, where the task is to find a minimum cost subgraph of $D$ whose fixed arc capacities admit an USPR of the commodities, is shown to be $\mathcal{NPO}$-complete. All three problems are of great practical interest in the planning of telecommunication networks that are based on shortest path routing protocols. Our results indicate that they are harder than the corresponding unsplittable flow or shortest multi-path routing problems.

We study the complexity of two Inverse Shortest Paths (ISP) problems with integer arc lengths and the requirement for uniquely determined shortest paths. Given a collection of paths in a directed graph, the task is to find positive integer arc lengths such that the given paths are uniquely determined shortest paths between their respective terminals. The first problem seeks for arc lengths that minimize the length of the longest of the prescribed paths. In the second problem, the length of the longest arc is to be minimized. We show that it is $np-hard$ to approximate the minimal longest path length within a factor less than $8/7$ or the minimal longest arc length within a factor less than $9/8$. This answers the (previously) open question whether these problems are $np-hard$ or not. We also present a simple algorithm that achieves an $\mathcal{O}(|V|)$-approximation guarantee for both variants. Both ISP problems arise in the planning of telecommunication networks with shortest path routing protocols. Our results imply that it is $\mathcal{NP}$-hard to decide whether a given path set can be realized with a real shortest path routing protocol such as OSPF, IS-IS, or RIP.

Let $G=(V,E)$ be a simple graph and $s$ and $t$ be two distinct vertices of $G$. A path in $G$ is called $\ell$-bounded for some $\ell\in\mathbb{N}$, if it does not contain more than $\ell$ edges. We study the computational complexity of approximating the optimum value for two optimization problems of finding sets of vertex-disjoint $\ell$-bounded $s,t$-paths in $G$. First, we show that computing the maximum number of vertex-disjoint $\ell$-bounded $s,t$-paths is $\mathcal{AP\kern-1pt X}$--complete for any fixed length bound $\ell\geq 5$. Second, for a given number $k\in\mathbb{N}$, $1\leq k \leq |V|-1$, and non-negative weights on the edges of $G$, the problem of finding $k$ vertex-disjoint $\ell$-bounded $s,t$-paths with minimal total weight is proven to be $\mathcal{NPO}$--complete for any length bound $\ell\geq 5$. Furthermore, we show that, even if $G$ is complete, it is $\mathcal{NP}$--complete to approximate the optimal solution value of this problem within a factor of $2^{\langle\phi\rangle^\epsilon}$ for any constant $0<\epsilon<1$, where $\langle\phi\rangle$ denotes the encoding size of the given problem instance $\phi$. We prove that these results are tight in the sense that for lengths $\ell\leq 4$ both problems are polynomially solvable, assuming that the weights satisfy a generalized triangle inequality in the weighted problem. All results presented also hold for directed and non-simple graphs. For the analogous problems where the path length restriction is replaced by the condition that all paths must have length equal to $\ell$ or where vertex-disjointness is replaced by edge-disjointness we obtain similar results.