## 05-XX COMBINATORICS (For finite fields, see 11Txx)

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (11)
- Doctoral Thesis (3)
- Master's Thesis (1)

#### Language

- English (15)

#### Is part of the Bibliography

- no (15)

#### Keywords

- Balanced Hypergraphs (1)
- D-optimality (1)
- Exact Designs (1)
- Factors (1)
- Game Theory (1)
- Graph Covering (1)
- Graph Partitioning (1)
- Matchings (1)
- Mengerian Hypergraphs (1)
- Mixed Integer Programming (1)

#### Institute

While graph covering is a fundamental and well-studied problem, this field lacks a broad and unified literature review. The holistic overview of graph covering given in this article attempts to close this gap. The focus lies on a characterization and classification of the different problems discussed in the literature. In addition, notable results and common approaches are also included. Whenever appropriate, our review extends to the corresponding partioning problems.

In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested.

In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory. In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of König and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall’s condition for bipartite graphs. In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs. In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs. In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.

We consider the problem of partitioning a weighted graph into k
connected components of similar weight. In particular, we consider the two classical objectives to maximize the lightest part or to minimize the heaviest part. For a partitioning of the vertex set and for both objectives, we give the first known approximation results on general graphs. Specifically, we give a $\Delta$-approximation where $\Delta$ is the maximum degree of an arbitrary spanning tree of the given graph.
Concerning the edge partition case, we even obtain a 2-approximation for the min-max and the max-min problem, by using the claw-freeness of line graphs.

We establish a general computational framework for Chvátal’s conjecture based on exact rational integer programming. As a result we prove Chvátal’s conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used.

Frankl’s (union-closed sets) conjecture states that for any nonempty finite union-closed (UC) family of distinct sets there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine
whether a given UC family ensures Frankl’s conjecture holds for all UC families which contain it. The weight systems are nontrivial to identify for a given UC family, and methods to determine such weight systems have led to several other open questions and conjectures regarding structures in UC families.
We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem using computational integer programming coupled with redundant verification routines that ensure correctness. We find over one hundred previously unknown families of sets which ensure Frankl’s conjecture holds for all families that contain any of them. This improves significantly on all previous results of the kind.
Our framework allows us to answer several open questions and conjectures regarding structural properties of UC families, including proving the 3-sets conjecture of Morris from 2006 which characterizes the minimum number of 3-sets that ensure Frankl’s conjecture holds for all families that contain them. Furthermore, our method provides a general algorithmic road-map for improving other known results and uncovering structures in UC families.

We consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. In particular, we propose a refined model that allows to precompute tighter relaxations for each operation mode. These relaxations may be used to strengthen the compressor station submodels in gas network optimization problems. We provide a procedure to obtain the refined model from the input data for the original model.

We find previously unknown families which imply Frankl’s conjecture using an algorithmic framework. The conjecture states that for any non-empty union-closed (or Frankl) family there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine whether a given Frankl family implies the conjecture for all Frankl families which contain it. A Frankl family is Non–Frankl-Complete (Non–FC), if it does not imply the conjecture in its elements for some Frankl family that contains it. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem. This method allows us to find a counterexample to a ten-year-old conjecture by R. Morris about the structure of generators for Non–FC-families.

Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.

Spawned by practical applications, numerous variations of the classical Steiner tree problem in graphs have been studied during the last decades. Despite the strong relationship between the different variants, solution approaches employed so far have been prevalently problem-specific.
In contrast, we pursue a general-purpose strategy resulting in a solver able to solve both the classical Steiner tree problem and ten of its variants without modification. These variants include well-known problems such as the prize-collecting Steiner tree problem, the maximum-weight connected subgraph problem or the rectilinear minimum Steiner tree problem. Bolstered by a variety of new methods, most notably reduction techniques, our solver is not only of unprecedented versatility, but furthermore competitive or even superior to specialized state-of-the-art programs for several Steiner problem variants.