## 05-XX COMBINATORICS (For finite fields, see 11Txx)

### Refine

#### Document Type

- ZIB-Report (8)
- Doctoral Thesis (2)
- Master's Thesis (1)

#### Keywords

- D-optimality (1)
- Exact Designs (1)
- Game Theory (1)
- Mixed Integer Programming (1)
- Optimal Design of Experiments (1)
- Price of Anarchy (1)
- SOCP Representability (1)
- Security Games (1)
- Stackelberg Equilibrium (1)
- Steiner Tree Problem (1)

#### Institute

We establish a general computational framework for Chvátal’s conjecture based on exact rational integer programming. As a result we prove Chvátal’s conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used.

Frankl’s (union-closed sets) conjecture states that for any nonempty finite union-closed (UC) family of distinct sets there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine
whether a given UC family ensures Frankl’s conjecture holds for all UC families which contain it. The weight systems are nontrivial to identify for a given UC family, and methods to determine such weight systems have led to several other open questions and conjectures regarding structures in UC families.
We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem using computational integer programming coupled with redundant verification routines that ensure correctness. We find over one hundred previously unknown families of sets which ensure Frankl’s conjecture holds for all families that contain any of them. This improves significantly on all previous results of the kind.
Our framework allows us to answer several open questions and conjectures regarding structural properties of UC families, including proving the 3-sets conjecture of Morris from 2006 which characterizes the minimum number of 3-sets that ensure Frankl’s conjecture holds for all families that contain them. Furthermore, our method provides a general algorithmic road-map for improving other known results and uncovering structures in UC families.

We consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. In particular, we propose a refined model that allows to precompute tighter relaxations for each operation mode. These relaxations may be used to strengthen the compressor station submodels in gas network optimization problems. We provide a procedure to obtain the refined model from the input data for the original model.

We find previously unknown families which imply Frankl’s conjecture using an algorithmic framework. The conjecture states that for any non-empty union-closed (or Frankl) family there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine whether a given Frankl family implies the conjecture for all Frankl families which contain it. A Frankl family is Non–Frankl-Complete (Non–FC), if it does not imply the conjecture in its elements for some Frankl family that contains it. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem. This method allows us to find a counterexample to a ten-year-old conjecture by R. Morris about the structure of generators for Non–FC-families.

Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.

Spawned by practical applications, numerous variations of the classical Steiner tree problem in graphs have been studied during the last decades. Despite the strong relationship between the different variants, solution approaches employed so far have been prevalently problem-specific.
In contrast, we pursue a general-purpose strategy resulting in a solver able to solve both the classical Steiner tree problem and ten of its variants without modification. These variants include well-known problems such as the prize-collecting Steiner tree problem, the maximum-weight connected subgraph problem or the rectilinear minimum Steiner tree problem. Bolstered by a variety of new methods, most notably reduction techniques, our solver is not only of unprecedented versatility, but furthermore competitive or even superior to specialized state-of-the-art programs for several Steiner problem variants.

One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. The challenging question is how to expand and operate the network in order to facilitate the transportation of specified gas quantities at minimum cost. This task can be formulated as a mathematical optimization problem that reflects to real-world instances of enormous size and complexity. The aim of this thesis is the development of novel theory and optimization algorithms which make it possible to solve these problems.
Gas network topology optimization problems can be modeled as nonlinear mixed-integer programs (MINLPs). Such an MINLP gives rise to a so-called active transmission problem (ATP), a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. The key to solving the ATP as well as the overall gas network topology optimization problem and the main contribution of this thesis is a novel domain relaxation of the variable bounds and constraints in combination with a penalization in the objective function. In case the domain relaxation does not yield a primal feasible solution for the ATP we offer novel sufficient conditions for proving the infeasibility of the ATP. These conditions can be expressed in the form of an MILP, i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm.
If the gas network consists only of pipes and valves, the ATP turns into a passive transmission problem (PTP). Although its constraints are non-convex, its domain relaxation can be proven to be convex. Consequently, the feasibility of the PTP can be checked directly in an efficient way. Another advantage of the passive case is that the solution of the domain relaxation gives rise to a cutting plane for the overall topology optimization problem that expresses the infeasibility of the PTP. This cut is obtained by a Benders argument from the Lagrange function of the domain relaxation augmented by a specially tailored pc-regularization. These cuts provide tight lower bounds for the passive gas network topology optimization problem.
The domain relaxation does not only provide certificates of infeasibility and cutting planes, it can also be used to construct feasible primal solutions. We make use of parametric sensitivity analysis in order to identify binary variables to be switched based on dual information. This approach allows for the first time to compute directly MINLP solutions for large-scale gas network topology optimization problems.
All the research in this thesis has been realized within the collaborative research project "Forschungskooperation Netzoptimierung (ForNe)". The developed software is in use by the cooperation partner Open Grid Europe GmbH.
Parts of this thesis have been published in book chapters, journal articles and technical reports. An overview of the topics and solution approaches within the research project is given by Martin et al. (2011) and Fügenschuh et al. (2013). Gas network operation approaches and solution methods are described in detail by Pfetsch et al. (2014) and with a special focus on topology optimization in Fügenschuh et al. (2011). The primal heuristic presented in this thesis is published by Humpola et al. (2014b). The method for pruning nodes of the branch-and-bound tree for an approximation of the original problem is described in Fügenschuh and Humpola (2013) and Humpola et al. (2014a). The Benders like inequality is introduced by Humpola and Fügenschuh (2013).

We introduce the class of spot-checking games (SC games). These games model
problems where the goal is to distribute fare inspectors over a toll network.
Although SC games are not zero-sum, we show that a Nash equilibrium
can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is
more relevant for this problem, but we show that this is NP-hard.
However, we give some bounds on the \emph{price of spite},
which measures how the
payoff of the inspector
degrades when committing to a Nash equilibrium.
Finally, we demonstrate the quality of these bounds for a real-world application,
namely the enforcement of a truck toll on German motorways.

Network Spot Checking Games: Theory and Application to Toll Enforcing in Transportation Networks
(2014)

We introduce the class of spot-checking games (SC games). These games model
problems where the goal is to distribute fare inspectors over a toll network.
In an SC game, the pure strategies of network users correspond to
paths in a graph, and the pure strategies of the inspectors
are subset of edges to be controlled.
Although SC games are not zero-sum, we show that a Nash equilibrium
can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is
more relevant for this problem, but we show that this is NP-hard.
However, we give some bounds on the \emph{price of spite},
which measures how the
payoff of the inspector
degrades when committing to a Nash equilibrium.
Finally, we demonstrate the quality of these bounds for a real-world application,
namely the enforcement of a truck toll on German motorways.

Let the design of an
experiment be represented by an $s$-dimensional vector
$\vec{w}$ of weights with non-negative components. Let the quality of
$\vec{w}$ for the estimation of the parameters of the statistical model
be measured by the criterion of $D$-optimality defined as the $m$-th root
of the determinant of the information matrix $M(\vec{w})=\sum_{i=1}^s
w_iA_iA_i^T$, where $A_i$, $i=1,...,s$, are known matrices with $m$ rows.
In the paper, we show that the criterion of $D$-optimality is second-order
cone representable. As a result, the method of second order cone
programming can be used to compute an approximate $D$-optimal design with
any system of linear constraints on the vector of weights. More
importantly, the proposed characterization allows us to compute an
\emph{exact} $D$-optimal design, which is possible thanks to high-quality
branch-and-cut solvers specialized to solve mixed integer second order cone
problems.
We prove that some other widely used criteria are also second order cone
representable, for instance the criteria of $A$-, and $G$-optimality, as
well as the criteria of $D_K$- and $A_K$-optimality, which are extensions
of $D$-, and $A$-optimality used in the case when only a specific system of
linear combinations of parameters is of interest.
We present several numerical examples demonstrating the efficiency and
universality of the proposed method. We show that in many cases the mixed
integer second order cone programming approach allows us to find a provably
optimal exact design, while the standard heuristics systematically miss the
optimum.