## 90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (46)
- Doctoral Thesis (1)

#### Language

- English (47)

#### Has Fulltext

- yes (47)

#### Is part of the Bibliography

- no (47)

#### Keywords

- polyhedral combinatorics (7)
- mixed-integer programming (6)
- integer programming (5)
- branching rule (4)
- mixed integer programming (4)
- stable set polytope (4)
- branch-and-bound (3)
- polyhedra and polytopes (3)
- polynomial inequalities (3)
- routing (3)

Nonnegativity certificates can be used to obtain tight dual bounds for polynomial optimization problems. Hierarchies of certificate-based relaxations ensure convergence to the global optimum, but higher levels of such hierarchies can become very computationally expensive, and the well-known sums of squares hierarchies scale poorly with the degree of the polynomials. This has motivated research into alternative certificates and approaches to global optimization. We consider sums of nonnegative circuit polynomials (SONC) certificates, which are well-suited for sparse problems since the computational cost depends on the number of terms in the polynomials and does not depend on the degrees of the polynomials. We propose a method that guarantees that given finite variable domains, a SONC relaxation will yield a finite dual bound. This method opens up a new approach to utilizing variable bounds in SONC-based methods, which is particularly crucial for integrating SONC relaxations into branch-and-bound algorithms. We report on computational experiments with incorporating SONC relaxations into the spatial branch-and-bound algorithm of the mixed-integer nonlinear programming framework SCIP. Applying our strengthening method increases the number of instances where the SONC relaxation of the root node yielded a finite dual bound from 9 to 330 out of 349 instances in the test set.

Certificates of polynomial nonnegativity can be used to obtain tight dual bounds for polynomial optimization problems. We consider Sums of Nonnegative Circuit (SONC) polynomials certificates, which are well suited for sparse problems since the computational cost depends only on the number of terms in the polynomials and does not depend on the degrees of the polynomials. This work is a first step to integrating SONC-based relaxations of polynomial problems into a branch-and-bound algorithm. To this end, the SONC relaxation for constrained optimization problems is extended in order to better utilize variable bounds, since this property is key for the success of a relaxation in the context of branch-and-bound. Computational experiments show that the proposed extension is crucial for making the SONC relaxations applicable to most constrained polynomial optimization problems and for integrating the two approaches.

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study of perspective cuts within a linear programming based branch-and-cut solver for general mixed-integer nonlinear programs. Within this study, we extend the applicability of perspective cuts from convex to nonconvex nonlinearities. This generalization is achieved by applying a perspective strengthening to valid linear inequalities which separate solutions of linear relaxations. The resulting method can be applied to any constraint where all variables appearing in nonlinear terms are semi-continuous and depend on at least one common indicator variable. Our computational experiments show that adding perspective cuts for convex constraints yields a consistent improvement of performance, and adding perspective cuts for nonconvex constraints reduces branch-and-bound tree sizes and strengthens the root node relaxation, but has no significant impact on the overall mean time.

Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 % on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 % on average.

Branching rules are an integral component of the branch-and-bound algorithm typically used to solve mixed-integer programs and subject to intense research. Different approaches for branching are typically compared based on the solving time as well as the size of the branch-and-bound tree needed to prove optimality. The latter, however, has some flaws when it comes to sophisticated branching rules that do not only try to take a good branching decision, but have additional side-effects. We propose a new measure for the quality of a branching rule that distinguishes tree size reductions obtained by better branching decisions from those obtained by such side-effects. It is evaluated for common branching rules providing new insights in the importance of strong branching.

In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules.
We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.

In this article we describe the impact from embedding a 15 year old model for solving the Steiner tree problem in graphs in a state-of-the-art MIP-Framework, making the result run in a massively parallel environment and extending the model to solve as many variants as possible. We end up with a high-perfomance solver that is capable of solving previously unsolved instances and, in contrast to its predecessor, is freely available for academic research.

The set packing problem, sometimes also called the stable set problem, is a well-known NP-hard problem in combinatorial optimization with a wide range of applications and an interesting polyhedral structure, that has been the subject of intensive study. We contribute to this field by showing how, employing cliques, odd set inequalities for the matching problem can be generalized to valid inequalities for the set packing polytope with a clear combinatorial meaning.

One of the essential components of a branch-and-bound based mixed-integer linear programming (MIP) solver is the branching rule. Strong branching is a method used by many state-of-the-art branching rules to select the variable to branch on. It precomputes the dual bounds of potential child nodes by solving auxiliary linear programs (LPs) and thereby helps to take good branching decisions that lead to a small search tree. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Domain propagation is a technique usually used at every node of the branch-and-bound tree to tighten the local domains of variables. Computational experiments on standard MIP instances indicate that our improved strong branching method significantly improves the quality of the predictions and causes almost no additional effort. For a full strong branching rule, we are able to obtain substantial reductions of the branch-and-bound tree size as well as the solving time. Moreover, also the state-of-the-art hybrid branching rule can be improved this way.
This paper extends previous work by the author published in the proceedings of the CPAIOR 2013.

This is a technical report for the SCIP constraint handler cons_bivariate. We describe a cut-generation algorithm for a class of bivariate twice continuously differentiable functions with
fixed convexity behavior over a box.
Computational results comparing our cut-generation algorithms with
state-of-the-art global
optimization software on a series of randomly generated test instances are reported and discussed.