## 90C35 Programming involving graphs or networks [See also 90C27]

Let $G$ be a directed acyclic graph with $n$ arcs, a source $s$ and a sink $t$. We introduce the cone $K$ of flow matrices, which is a polyhedral cone
generated by the matrices $1_P 1_P^T \in R^{n\times n}$, where
$1_P\in R^n$ is the incidence vector of the $(s,t)$-path $P$.
Several combinatorial problems reduce to a linear optimization problem over $K$.
This cone is intractable, but we provide two convergent approximation hierarchies, one of them based on a
completely positive representation of $K$.
We illustrate this approach by computing bounds for a maximum flow problem with pairwise arc-capacities.

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which products are mixed in intermediate pools in order to meet quality targets at their destinations. In this technical report, we characterize the extreme points of the convex hull of our non-convex set, and show that they are not finite, i.e., the convex hull is not polyhedral. This analysis was used to derive valid nonlinear convex inequalities and show that, for a specific case, they characterize the convex hull of our set. The new valid inequalities and computational results are presented in ZIB Report 18-12.

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by considering a single product, a single attibute, and a single pool. The convex hull of the resulting nonconvex set is not polyhedral. We derive valid linear and convex nonlinear inequalities for the convex hull, and demonstrate that different subsets of these inequalities define the convex hull of the nonconvex set in three cases determined by the parameters of the set. Computational results on literature instances and newly created larger test instances demonstrate that the inequalities can significantly strengthen the convex relaxation of the pq-formulation of the pooling problem, which is the relaxation known to have the strongest bound.

Steiner trees are constructed to connect a set of terminal nodes in a graph. This basic version of the Steiner tree problem is idealized, but it can effectively guide the search for successful approaches to many relevant variants, from both a theoretical and a computational point of view. This article illustrates the theoretical and algorithmic progress on Steiner tree type problems on two examples, the Steiner connectivity and the Steiner tree packing problem.

The Steiner tree packing problem (STPP) in graphs is a long studied
problem in combinatorial optimization. In contrast to many other problems,
where there have been tremendous advances in practical problem
solving, STPP remains very difficult. Most heuristics schemes are ineffective
and even finding feasible solutions is already NP-hard. What makes
this problem special is that in order to reach the overall optimal solution
non-optimal solutions to the underlying NP-hard Steiner tree problems
must be used. Any non-global approach to the STPP is likely to fail.
Integer programming is currently the best approach for computing optimal
solutions. In this paper we review some “classical” STPP instances
which model the underlying real world application only in a reduced form.
Through improved modelling, including some new cutting planes, and by
emplyoing recent advances in solver technology we are for the first time
able to solve those instances in the original 3D grid graphs to optimimality.

We estimate potential energy savings in IP-over-WDM networks achieved by switching off router line cards in low-demand hours. We compare three approaches to react on dynamics in the IP traffic over time, FUFL, DUFL and DUDL. They provide different levels of freedom in adjusting the routing of lightpaths in the WDM layer and the routing of demands in the IP layer. Using MILP models based on three realistic network topologies as well as realistic demands, power, and cost values, we show that already a simple monitoring of the lightpath utilization in order to deactivate empty line cards (FUFL) brings substantial benefits. The most significant savings, however, are achieved by rerouting traffic in the IP layer (DUFL), which allows emptying and deactivating lightpaths together with the corresponding line cards. A sophisticated reoptimization of the virtual topologies and the routing in the optical domain for every demand scenario (DUDL) yields nearly no additional profits in the considered networks. These results are independent of the ratio between the demand and capacity granularities, the time scale and the network topology, and show little dependency on the demand structure.

Given a general mixed integer program (MIP), we automatically detect block structures in the constraint matrix together with the coupling by capacity constraints arising from multi-commodity-flow formulations. We identify the underlying graph and generate cutting planes based on cuts in the detected network. Our implementation adds a separator to the branch-and-cut libraries of SCIP and CPLEX. We make use of the complemented mixed integer rounding framework (cMIR) but provide a special purpose aggregation heuristic that exploits the network structure. Our separation scheme speeds-up the computation for a large set of MIPs coming from network design problems by a factor of two on average.

This survey concerns optimization problems arising in the design of survivable communication networks. It turns out that such problems can be modeled in a natural way as non-compact linear programming formulations based on multicommodity flow network models. These non-compact formulations involve an exponential number of path flow variables, and therefore require column generation to be solved to optimality. We consider several path-based survivability mechanisms and present results, both known and new, on the complexity of the corresponding column generation problems (called the pricing problems). We discuss results for the case of the single link (or node) failures scenarios, and extend the considerations to multiple link failures. Further, we classify the design problems corresponding to different survivability mechanisms according to the structure of their pricing problem. Finally, we show that almost all encountered pricing problems are hard to solve for scenarios admitting multiple failures.

Orbitopes can be used to handle symmetries which arise in integer programming formulations with an inherent assignment structure. We investigate the detection of symmetries appearing in this approach. We show that detecting so-called orbitopal symmetries is graph-isomorphism hard in general, but can be performed in linear time if the assignment structure is known.

Abstract The cost-efficient design of survivable optical telecommunication networks is the topic of this thesis. In cooperation with network operators, we have developed suitable concepts and mathematical optimization methods to solve this comprehensive planning task in practice. Optical technology is more and more employed in modern telecommunication networks. Digital information is thereby transmitted as short light pulses through glass fibers. Moreover, the optical medium allows for simultaneous transmissions on a single fiber by use of different wavelengths. Recent optical switches enable a direct forwarding of optical channels in the network nodes without the previously required signal retransformation to electronics. Their integration creates ongoing optical connections,which are called lightpaths. We study the problem of finding cost-efficient configurations of optical networks which meet specified communication requirements. A configuration comprises the determination of all lightpaths to establish as well as the detailed allocation of all required devices and systems. We use a flexible modeling framework for a realistic representation of the networks and their composition. For different network architectures, we formulate integer linear programs which model the design task in detail. Moreover, network survivability is an important issue due to the immense bandwidths offered by optical technology. Operators therefore request for designs which perpetuate protected connections and guarantee for a defined minimum throughput in case of malfunctions. In order to achieve an effective realization of scalable protection, we present a novel survivability concept tailored to optical networks and integrate several variants into the models. Our solution approach is based on a suitable model decomposition into two subtasks which separates two individually hard subproblems and enables this way to compute cost-efficient designs with approved quality guarantee. The first subtask consists of routing the connections with corresponding dimensioning of capacities and constitutes a common core task in the area of network planning. Sophisticated methods for such problems have already been developed and are deployed by appropriate integration. The second subtask is characteristic for optical networks and seeks for a conflict-free assignment of available wavelengths to the lightpaths using a minimum number of involved wavelength converters. For this coloring-like task, we derive particular models and study methods to estimate the number of unavoidable conversions. As constructive approach, we develop heuristics and an exact branch-and-price algorithm. Finally, we carry out an extensive computational study on realistic data, provided by our industrial partners. As twofold purpose, we demonstrate the potential of our approach for computing good solutions with quality guarantee, and we exemplify its flexibility for application to network design and analysis.