• Deutsch
Login

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Schwarz, Robert (24)
  • Koch, Thorsten (15)
  • Hiller, Benjamin (13)
  • Schweiger, Jonas (13)
  • Humpola, Jesco (12)
  • Schewe, Lars (12)
  • Lehmann, Thomas (10)
  • Pfetsch, Marc (9)
  • Schmidt, Martin (9)
  • Fügenschuh, Armin (7)
+ more

Year of publication

  • 2020 (1)
  • 2019 (1)
  • 2018 (3)
  • 2017 (3)
  • 2016 (5)
  • 2015 (3)
  • 2014 (1)
  • 2013 (2)
  • 2012 (2)
  • 2011 (3)
+ more

Document Type

  • ZIB-Report (12)
  • Article (6)
  • In Proceedings (4)
  • Book chapter (2)

Language

  • English (23)
  • German (1)

Has Fulltext

  • yes (13)
  • no (11)

Is part of the Bibliography

  • no (24)

Keywords

  • Buchungsvalidierung (1)
  • Entry-Exit Model (1)
  • Expansion Planning (1)
  • Gas Distribution Networks (1)
  • Gas Market Liberalization (1)
  • Gas Network Access Regulation (1)
  • Gas Network Applications (1)
  • Gasnetzplanung (1)
  • LP solver (1)
  • MINLP solver (1)
+ more

Institute

  • Mathematical Optimization (24)
  • Mathematical Optimization Methods (5)
  • Energy Network Optimization (3)

24 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
The SCIP Optimization Suite 4.0 (2017)
Maher, Stephen J. ; Fischer, Tobias ; Gally, Tristan ; Gamrath, Gerald ; Gleixner, Ambros ; Gottwald, Robert Lion ; Hendel, Gregor ; Koch, Thorsten ; Lübbecke, Marco ; Miltenberger, Matthias ; Müller, Benjamin ; Pfetsch, Marc ; Puchert, Christian ; Rehfeldt, Daniel ; Schenker, Sebastian ; Schwarz, Robert ; Serrano, Felipe ; Shinano, Yuji ; Weninger, Dieter ; Witt, Jonas T. ; Witzig, Jakob
The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.
GasLib – A Library of Gas Network Instances (2017)
Schmidt, Martin ; Assmann, Denis ; Burlacu, Robert ; Humpola, Jesco ; Joormann, Imke ; Kanelakis, Nikolaos ; Koch, Thorsten ; Oucherif, Djamal ; Pfetsch, Marc ; Schewe, Lars ; Schwarz, Robert ; Sirvent, Matthias
The SCIP Optimization Suite 3.2 (2016)
Gamrath, Gerald ; Fischer, Tobias ; Gally, Tristan ; Gleixner, Ambros ; Hendel, Gregor ; Koch, Thorsten ; Maher, Stephen J. ; Miltenberger, Matthias ; Müller, Benjamin ; Pfetsch, Marc ; Puchert, Christian ; Rehfeldt, Daniel ; Schenker, Sebastian ; Schwarz, Robert ; Serrano, Felipe ; Shinano, Yuji ; Vigerske, Stefan ; Weninger, Dieter ; Winkler, Michael ; Witt, Jonas T. ; Witzig, Jakob
The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.
Optimal Looping of Pipelines in Gas Networks (2016)
Lenz, Ralf ; Schwarz, Robert
In this paper, we compare several approaches for the problem of gas network expansions using loops, that is, to build new pipelines in parallel to existing ones. We present different model formulations for the problem of continuous loop expansions as well as discrete loop expansions. We then analyze problem properties, such as the structure and convexity of the underlying feasible regions. The paper concludes with a computational study comparing the continuous and the discrete formulations.
Using Bilevel Optimization to find Severe Transport Situations in Gas Transmission Networks (2016)
Hennig, Kai ; Schwarz, Robert
In the context of gas transmission in decoupled entry-exit systems, many approaches to determine the network capacity are based on the evaluation of realistic and severe transport situations. In this paper, we review the Reference Point Method, which is an algorithm used in practice to generate a set of scenarios using the so-called transport moment as a measure for severity. We introduce a new algorithm for finding severe transport situations that considers an actual routing of the flow through the network and is designed to handle issues arising from cyclic structures in a more dynamical manner. Further, in order to better approximate the physics of gas, an alternative, potential based flow formulation is proposed. The report concludes with a case study based on data from the benchmark library GasLib.
PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite (2016)
Maher, Stephen J. ; Miltenberger, Matthias ; Pedroso, João Pedro ; Rehfeldt, Daniel ; Schwarz, Robert ; Serrano, Felipe
SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.
Optimierung Technischer Kapazitäten in Gasnetzen (2012)
Martin, Alexander ; Geißler, Björn ; Hayn, Christine ; Hiller, Benjamin ; Humpola, Jesco ; Koch, Thorsten ; Lehmann, Thomas ; Morsi, Antonio ; Pfetsch, Marc ; Schewe, Lars ; Schmidt, Martin ; Schultz, Rüdiger ; Schwarz, Robert ; Schweiger, Jonas ; Steinbach, Marc ; Willert, Bernhard
Die mittel- und längerfristige Planung für den Gastransport hat sich durch Änderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazität und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und Lösungsansätze skizziert.
GasLib - A Library of Gas Network Instances (2015)
Humpola, Jesco ; Joormann, Imke ; Oucherif, Djamal ; Pfetsch, Marc ; Schewe, Lars ; Schmidt, Martin ; Schwarz, Robert
The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.
Computational results for validation of nominations (2015)
Hiller, Benjamin ; Humpola, Jesco ; Lehmann, Thomas ; Lenz, Ralf ; Morsi, Antonio ; Pfetsch, Marc ; Schewe, Lars ; Schmidt, Martin ; Schwarz, Robert ; Schweiger, Jonas ; Stangl, Claudia ; Willert, Bernhard M.
The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances.
Optimierung Technischer Kapazitäten in Gasnetzen (2011)
Martin, Alexander ; Geißler, Björn ; Heyn, Christine ; Hiller, Benjamin ; Humpola, Jesco ; Koch, Thorsten ; Lehmann, Thomas ; Morsi, Antonio ; Pfetsch, Marc ; Schewe, Lars ; Schmidt, Martin ; Schultz, Rüdiger ; Schwarz, Robert ; Schweiger, Jonas ; Steinbach, Marc ; Willert, Bernhard
  • 1 to 10

OPUS4 Logo

  • Contact
  • Impressum und Datenschutz
  • Sitelinks