Refine
Year of publication
Document Type
- ZIB-Report (10)
- In Proceedings (4)
- Article (2)
- Doctoral Thesis (1)
- Master's Thesis (1)
Keywords
- linear programming (4)
- mixed-integer semidefinite programming (3)
- Steiner tree optimization (2)
- branch-and-cut (2)
- branch-and-price (2)
- column generation framework (2)
- constraint integer programming (2)
- mixed-integer linear programming (2)
- mixed-integer nonlinear programming (2)
- mixed-integer programming (2)
Institute
The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added
to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.
We investigate how the numerical properties of the LP relaxations evolve
throughout the solution procedure in a solver employing the branch-and-cut
algorithm. The long-term goal of this work is to determine whether the effect
on the numerical conditioning of the LP relaxations resulting from the
branching and cutting operations can be effectively predicted
and whether such predictions can be used to make better algorithmic
choices. In a first step towards this goal, we discuss here the numerical
behavior of an existing solver in order to determine whether our
intuitive understanding of this behavior is correct.
We investigate how the numerical properties of the LP relaxations evolve
throughout the solution procedure in a solver employing the branch-and-cut
algorithm. The long-term goal of this work is to determine whether the effect
on the numerical conditioning of the LP relaxations resulting from the
branching and cutting operations can be effectively predicted
and whether such predictions can be used to make better algorithmic
choices. In a first step towards this goal, we discuss here the numerical
behavior of an existing solver in order to determine whether our
intuitive understanding of this behavior is correct.
Dieser Beitrag stellt mögliche Ansätze zur Reduktion der Rechenzeit von linearen Optimierungsproblemen mit energiewirtschaftlichem Anwendungshintergrund vor. Diese Ansätze bilden im Allgemeinen die Grundlage für konzeptionelle Strategien zur Beschleunigung von Energiesystemmodellen. Zu den einfachsten Beschleunigungsstrategien zählt die Verkleinerung der Modelldimensionen, was beispielsweise durch Ändern der zeitlichen, räumlichen oder technologischen Auflösung eines Energiesystemmodells erreicht werden kann. Diese Strategien sind zwar häufig ein Teil der Methodik in der Energiesystemanalyse, systematische Benchmarks zur Bewertung ihrer Effektivität werden jedoch meist nicht durchgeführt. Die vorliegende Arbeit adressiert genau diesen Sachverhalt. Hierzu werden Modellinstanzen des Modells REMix in verschiedenen Größenordnungen mittels einer Performance-Benchmark-Analyse untersucht. Die Ergebnisse legen zum einen den Schluss nahe, dass verkürzte Betrachtungszeiträume das größte Potential unter den hier analysierten Strategien zur Reduktion von Rechenzeit bieten. Zum anderen empfiehlt sich die Verwendung des Barrier-Lösungsverfahrens mit multiplen Threads unter Vernachlässigung des Cross-Over.
SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice.
This paper describes three presolving techniques for solving mixed integer programming problems (MIPs) that were implemented in the academic MIP solver SCIP. The task of presolving is to reduce the problem size and strengthen the formulation, mainly by eliminating redundant information and exploiting problem structures. The first method fixes continuous singleton columns and extends results known from duality fixing. The second analyzes and exploits pairwise dominance relations between variables, whereas the third detects isolated subproblems and solves them independently. The performance of the presented techniques is demonstrated on two MIP test sets. One contains all benchmark instances from the last three MIPLIB versions, while the other consists of real-world supply chain management problems. The computational results show that the combination of all three presolving techniques almost halves the solving time for the considered supply chain management problems. For the MIPLIB instances we obtain a speedup of 20 % on affected instances while not degrading the performance on the remaining problems.
State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming. We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies. For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance. We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem. In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class. Finally, we discuss the computational benefits of using the proposed adaptive selection within the SCIP Optimization Suite on publicly available MIP instances.
The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of robust and future-proof decision support systems. The complexity of industrial-scale supply chain optimization, however, often poses limits to the application of general mixed-integer programming solvers. In this paper we describe algorithmic innovations that help to ensure that MIP solver performance matches the complexity of the large supply chain problems and tight time limits encountered in practice. Our computational evaluation is based on a diverse set, modeling real-world scenarios supplied by our industry partner SAP.
State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming.
We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies.
For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance.
We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem.
In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class.
Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances.