Refine
Document Type
- Article (8)
- ZIB-Report (8)
- Book chapter (3)
- In Proceedings (2)
- Doctoral Thesis (1)
Is part of the Bibliography
- no (22)
Keywords
- Mixed-Integer Nonlinear Programming (4)
- Network Design (2)
- Relaxations (2)
- Buchungsvalidierung (1)
- Cutting Planes (1)
- Duality (1)
- Entry-Exit Model (1)
- Gas Distribution Networks (1)
- Gas Market Liberalization (1)
- Gas Network Access Regulation (1)
Institute
The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators.
While previously network operator and gas vendor where united, they were forced to split up into independent companies.
The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way.
We show that these new paradigms lead to new and challenging mathematical optimization problems.
In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed.
With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.
Gas distribution networks are complex structures that consist of
passive pipes, and active, controllable elements such as valves and
compressors. Controlling such network means to find a suitable setting
for all active components such that a nominated amount of gas can be
transmitted from entries to exits through the network, without
violating physical or operational constraints. The control of a
large-scale gas network is a challenging task from a practical point
of view. In most companies the actual controlling process is supported
by means of computer software that is able to simulate the flow of the
gas. However, the active settings have to be set manually within such
simulation software. The solution quality thus depends on the
experience of a human planner.
When the gas network is insufficient for the transport then topology
extensions come into play. Here a set of new pipes or active elements
is determined such that the extended network admits a feasible control
again. The question again is how to select these extensions and where
to place them such that the total extension costs are
minimal. Industrial practice is again to use the same simulation
software, determine extensions by experience, add them to the virtual
network, and then try to find a feasible control of the active
elements. The validity of this approach now depends even more on the
human planner.
Another weakness of this manual simulation-based approach is that it
cannot establish infeasibility of a certain gas nomination, unless all
settings of the active elements are tried. Moreover, it is impossible
to find a cost-optimal network extension in this way.
In order to overcome these shortcomings of the manual planning
approach we present a new approach, rigorously based on mathematical
optimization. Hereto we describe a model for finding feasible
controls and then extend this model such that topology extensions can
additionally and simultaneously be covered. Numerical results for real-world instances are presented and
discussed.
We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances.
We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances.
In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints.
We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.
The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.
The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.
One-quarter of Europe’s energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology optimization problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. We offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex continuous nonlinear program (NLP) can be certified by solving an MILP. This result provides an efficient pruning procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speedup for the necessary computations.
Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.