@misc{FuegenschuhGeisslerGollmeretal., author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Rene and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets}, issn = {1438-0064}, doi = {10.1007/s12667-013-0099-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17821}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.}, language = {en} } @misc{FuegenschuhHillerHumpolaetal., author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szab{\´o}, J{\´a}cint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, doi = {10.1109/EEM.2011.5953035}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12348}, number = {11-09}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @misc{FuegenschuhHumpola, author = {F{\"u}genschuh, Armin and Humpola, Jesco}, title = {A Unified View on Relaxations for a Nonlinear Network Flow Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18857}, abstract = {We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances.}, language = {en} } @misc{HumpolaFuegenschuh, author = {Humpola, Jesco and F{\"u}genschuh, Armin}, title = {A New Class of Valid Inequalities for Nonlinear Network Design Problems}, issn = {1438-0064}, doi = {10.1007/s00291-015-0390-2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17771}, abstract = {We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances.}, language = {en} } @article{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, series = {Optimization Methods and Software}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @article{FuegenschuhGeisslerGollmeretal., author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Ren{\´e} and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets}, series = {Energy Systems}, volume = {5}, journal = {Energy Systems}, number = {3}, publisher = {Springer Berlin Heidelberg}, address = {Berlin}, doi = {10.1007/s12667-013-0099-8}, pages = {449 -- 473}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network's capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.}, language = {en} } @article{HumpolaJoormannOucherifetal., author = {Humpola, Jesco and Joormann, Imke and Oucherif, Djamal and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert}, title = {GasLib - A Library of Gas Network Instances}, series = {Optimization Online}, journal = {Optimization Online}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57950}, abstract = {The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances that can be used by researchers in the field of gas transport. The advantages are that researchers save time by using these instances and that different models and algorithms can be compared on the same specified test sets. The library instances are encoded in an XML format. In this paper, we explain this format and present the instances that are available in the library.}, language = {en} } @article{HumpolaSerrano, author = {Humpola, Jesco and Serrano, Felipe}, title = {Sufficient pruning conditions for MINLP in gas network design}, series = {EURO Journal on Computational Optimization}, volume = {5}, journal = {EURO Journal on Computational Optimization}, number = {1-2}, publisher = {Springer Berlin Heidelberg}, doi = {10.1007/s13675-016-0077-8}, pages = {239 -- 261}, abstract = {One-quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology optimization problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. We offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex continuous nonlinear program (NLP) can be certified by solving an MILP. This result provides an efficient pruning procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speedup for the necessary computations.}, language = {en} } @inproceedings{FuegenschuhHillerHumpolaetal., author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szabo, Jacint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, series = {International Conference on the European Energy Market (EEM)}, booktitle = {International Conference on the European Energy Market (EEM)}, doi = {10.1109/EEM.2011.5953035}, pages = {346 -- 351}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @article{SchmidtAssmannBurlacuetal., author = {Schmidt, Martin and Assmann, Denis and Burlacu, Robert and Humpola, Jesco and Joormann, Imke and Kanelakis, Nikolaos and Koch, Thorsten and Oucherif, Djamal and Pfetsch, Marc and Schewe, Lars and Schwarz, Robert and Sirvent, Matthias}, title = {GasLib - A Library of Gas Network Instances}, series = {Data}, volume = {2}, journal = {Data}, number = {4}, doi = {10.3390/data2040040}, language = {en} } @inproceedings{MartinGeisslerHeynetal.2011, author = {Martin, Alexander and Geißler, Bj{\"o}rn and Heyn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, series = {Optimierung in der Energiewirtschaft}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {105 -- 114}, year = {2011}, language = {en} } @misc{Humpola, author = {Humpola, Jesco}, title = {Sufficient Pruning Conditions for MINLP in Gas Network Design}, doi = {10.1007/s13675-016-0077-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53489}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology extension problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. In this article we offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speed-up for the necessary computations.}, language = {en} } @incollection{HillerHumpolaLehmannetal., author = {Hiller, Benjamin and Humpola, Jesco and Lehmann, Thomas and Lenz, Ralf and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Willert, Bernhard}, title = {Computational results for validation of nominations}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances.}, language = {en} } @phdthesis{Humpola2014, author = {Humpola, Jesco}, title = {Gas Network Optimization by MINLP}, school = {Technische Universit{\"a}t Berlin}, year = {2014}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. The challenging question is how to expand and operate the network in order to facilitate the transportation of specified gas quantities at minimum cost. This task can be formulated as a mathematical optimization problem that reflects to real-world instances of enormous size and complexity. The aim of this thesis is the development of novel theory and optimization algorithms which make it possible to solve these problems. Gas network topology optimization problems can be modeled as nonlinear mixed-integer programs (MINLPs). Such an MINLP gives rise to a so-called active transmission problem (ATP), a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. The key to solving the ATP as well as the overall gas network topology optimization problem and the main contribution of this thesis is a novel domain relaxation of the variable bounds and constraints in combination with a penalization in the objective function. In case the domain relaxation does not yield a primal feasible solution for the ATP we offer novel sufficient conditions for proving the infeasibility of the ATP. These conditions can be expressed in the form of an MILP, i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm. If the gas network consists only of pipes and valves, the ATP turns into a passive transmission problem (PTP). Although its constraints are non-convex, its domain relaxation can be proven to be convex. Consequently, the feasibility of the PTP can be checked directly in an efficient way. Another advantage of the passive case is that the solution of the domain relaxation gives rise to a cutting plane for the overall topology optimization problem that expresses the infeasibility of the PTP. This cut is obtained by a Benders argument from the Lagrange function of the domain relaxation augmented by a specially tailored pc-regularization. These cuts provide tight lower bounds for the passive gas network topology optimization problem. The domain relaxation does not only provide certificates of infeasibility and cutting planes, it can also be used to construct feasible primal solutions. We make use of parametric sensitivity analysis in order to identify binary variables to be switched based on dual information. This approach allows for the first time to compute directly MINLP solutions for large-scale gas network topology optimization problems. All the research in this thesis has been realized within the collaborative research project "Forschungskooperation Netzoptimierung (ForNe)". The developed software is in use by the cooperation partner Open Grid Europe GmbH. Parts of this thesis have been published in book chapters, journal articles and technical reports. An overview of the topics and solution approaches within the research project is given by Martin et al. (2011) and F{\"u}genschuh et al. (2013). Gas network operation approaches and solution methods are described in detail by Pfetsch et al. (2014) and with a special focus on topology optimization in F{\"u}genschuh et al. (2011). The primal heuristic presented in this thesis is published by Humpola et al. (2014b). The method for pruning nodes of the branch-and-bound tree for an approximation of the original problem is described in F{\"u}genschuh and Humpola (2013) and Humpola et al. (2014a). The Benders like inequality is introduced by Humpola and F{\"u}genschuh (2013).}, language = {en} } @incollection{HumpolaFuegenschuhHilleretal., author = {Humpola, Jesco and F{\"u}genschuh, Armin and Hiller, Benjamin and Koch, Thorsten and Lehmann, Thomas and Lenz, Ralf and Schwarz, Robert and Schweiger, Jonas}, title = {The Specialized MINLP Approach}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {We propose an approach to solve the validation of nominations problem using mixed-integer nonlinear programming (MINLP) methods. Our approach handles both the discrete settings and the nonlinear aspects of gas physics. Our main contribution is an innovative coupling of mixed-integer (linear) programming (MILP) methods with nonlinear programming (NLP) that exploits the special structure of a suitable approximation of gas physics, resulting in a global optimization method for this type of problem.}, language = {en} } @article{HumpolaLehmannFuegenschuh, author = {Humpola, Jesco and Lehmann, Thomas and F{\"u}genschuh, Armin}, title = {A primal heuristic for optimizing the topology of gas networks based on dual information}, series = {EURO Journal on Computational Optimization}, volume = {3}, journal = {EURO Journal on Computational Optimization}, number = {1}, doi = {10.1007/s13675-014-0029-0}, pages = {53 -- 78}, abstract = {We present a novel heuristic to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point of a nonlinear relaxation. Based on the information from the KKT point we alter some of the binary variables in a locally promising way exploiting our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @incollection{HaynHumpolaKochetal., author = {Hayn, Christine and Humpola, Jesco and Koch, Thorsten and Schewe, Lars and Schweiger, Jonas and Spreckelsen, Klaus}, title = {Perspectives}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions.}, language = {en} } @misc{HumpolaFuegenschuhLehmann, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Lehmann, Thomas}, title = {A Primal Heuristic for MINLP based on Dual Information}, issn = {1438-0064}, doi = {10.1007/s13675-014-0029-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43110}, abstract = {We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point for a nonlinear relaxation. Based on the information from the KKT point we alter some of the integer variables in a locally promising way. We describe this heuristic for general MINLPs and then show how to tailor the heuristic to exploit our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @article{HumpolaFuegenschuh, author = {Humpola, Jesco and F{\"u}genschuh, Armin}, title = {Convex reformulations for solving a nonlinear network design problem}, series = {Computational Optimization and Applications}, volume = {62}, journal = {Computational Optimization and Applications}, number = {3}, publisher = {Springer US}, doi = {10.1007/s10589-015-9756-2}, pages = {717 -- 759}, abstract = {We consider a nonlinear nonconvex network design problem that arises, for example, in natural gas or water transmission networks. Given is such a network with active and passive components, that is, valves, compressors, control valves (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes in the network. The active elements are associated with costs when used. Besides flow conservation constraints in the nodes, the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is to compute a cost minimal setting of the active components and numerical values for the flow and node potentials. We examine different (convex) relaxations for a subproblem of the design problem and benefit from them within a branch-and-bound approach. We compare different approaches based on nonlinear optimization numerically on a set of test instances.}, language = {en} } @article{HumpolaFuegenschuhKoch, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Koch, Thorsten}, title = {Valid inequalities for the topology optimization problem in gas network design}, series = {OR Spectrum}, volume = {38}, journal = {OR Spectrum}, number = {3}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {https://doi.org/10.1007/s00291-015-0390-2}, pages = {597 -- 631}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euro per km extending the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. Unfortunately, current mathematical methods are not capable of solving the arising network design problems due to their size and complexity. In this article, we will show how to apply optimization methods that can converge to a proven global optimal solution. By introducing a new class of valid inequalities that improve the relaxation of our mixed-integer nonlinear programming model, we are able to speed up the necessary computations substantially.}, language = {en} } @misc{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, issn = {1438-0064}, doi = {10.1080/10556788.2014.888426}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16531}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.}, language = {en} } @misc{MartinGeisslerHaynetal., author = {Martin, Alexander and Geißler, Bj{\"o}rn and Hayn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15121}, abstract = {Die mittel- und l{\"a}ngerfristige Planung f{\"u}r den Gastransport hat sich durch {\"A}nderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazit{\"a}t und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und L{\"o}sungsans{\"a}tze skizziert.}, language = {de} }