Refine
Year of publication
Document Type
- ZIB-Report (26)
- Article (13)
- In Proceedings (13)
- Other (1)
Is part of the Bibliography
- no (53)
Keywords
- Optimal Experimental Design (3)
- SDP (3)
- Flows in graphs (2)
- Game Theory (2)
- Hilbert's projective metric (2)
- Integer Programming (2)
- Mixed Integer Programming (2)
- SOCP (2)
- Semidefinite Programming (2)
- Stackelberg Equilibrium (2)
Institute
- Mathematical Optimization (52)
- Mathematics of Transportation and Logistics (28)
- Mathematics of Health Care (16)
- Network Optimization (2)
- Visual Data Analysis (2)
- Visual and Data-centric Computing (2)
- Computational Medicine (1)
- Numerical Mathematics (1)
- Visual Data Analysis in Science and Engineering (1)
We study a family of combinatorial optimization problems
defined by a parameter $p\in[0,1]$, which involves spectral
functions applied to positive semidefinite matrices, and has
some application in the theory of optimal experimental design.
This family of problems tends to a generalization of the classical
maximum coverage problem as $p$ goes to $0$, and to a trivial instance
of the knapsack problem as $p$ goes to $1$.
In this article, we establish a matrix inequality which shows that the objective function is submodular for all $p\in[0,1]$, from which it follows
that the greedy approach, which has often been used for this problem, always gives a design within $1-1/e$ of the optimum.
We next study the design found by rounding the solution of the continuous relaxed problem, an approach which has been applied by several authors.
We prove an inequality which generalizes a classical result from the theory
of optimal designs, and allows us to give a rounding procedure with an approximation
factor which tends to $1$ as $p$ goes to $1$.
We propose a game theoretic model for the spatial distribution of inspectors on a
transportation network.
The problem is to spread out the controls so as to enforce the payment of a transit
toll. We formulate a linear program to find
the control distribution which maximizes the expected toll revenue,
and a mixed integer program for the problem of minimizing
the number of evaders. Furthermore, we show that the problem of finding an optimal
mixed strategy for a coalition of $N$ inspectors can be solved
efficiently by a column generation procedure. Finally, we give experimental results
from an application to the truck toll on German motorways.
This paper proposes the first model for toll enforcement optimization
on German motorways. The enforcement is done by mobile control teams and our
goal is to produce a schedule achieving network-wide control, proportional to
spatial and time-dependent traffic distributions. Our model consists of two
parts. The first plans
control tours using a vehicle routing approach with profits and some side
constraints. The second plans feasible rosters for the control teams. Both
problems can be modeled as Multi-Commodity Flow Problems. Adding additional
coupling constraints produces a large-scale integrated integer programming
formulation. We show that this model can be solved to optimality for real
world instances associated with a control area in East Germany.
In the past few years several applications of optimal
experimental designs have emerged to optimize the measurements
in communication networks. The optimal design problems arising from
this kind of applications share three interesting properties:
(i) measurements are only available at a small number of locations of the network;
(ii) each monitor can simultaneously measure several quantities, which
can be modeled by ``multiresponse experiments";
(iii) the observation matrices depend on the topology of the network.
In this paper, we give an overview of these experimental design
problems and recall recent results for the computation of optimal
designs by Second Order Cone Programming (SOCP). New results for the
network-monitoring of a discrete time process are presented. In particular, we show
that the optimal design problem for the monitoring of an AR1 process can be reduced
to the standard form and we give experimental results.
Let G be a directed acyclic graph with n arcs, a source s and a sink t. We introduce the cone K of flow matrices, which is a polyhedral cone
generated by the matrices $\vec{1}_P\vec{1}_P^T\in\RR^{n\times n}$, where
$\vec{1}_P\in\RR^n$ is the incidence vector of the (s,t)-path P.
We show that several hard flow (or path) optimization problems, that cannot be solved by using the standard arc-representation
of a flow, reduce to a linear optimization problem over $\mathcal{K}$.
This cone is intractable: we prove that the membership problem associated to $\mathcal{K}$
is NP-complete. However, the affine hull of this cone admits a nice description,
and we give an algorithm which computes in polynomial-time the decomposition of a matrix
$X\in \operatorname{span} \mathcal{K}$ as a linear combination of some $\vec{1}_P\vec{1}_P^T$'s.
Then, we provide two convergent approximation hierarchies, one of them based on a
completely positive representation of~K.
We illustrate this approach by computing bounds for
the quadratic shortest path problem, as well as
a maximum flow problem with pairwise arc-capacities.
Network Spot Checking Games: Theory and Application to Toll Enforcing in Transportation Networks
(2014)
We introduce the class of spot-checking games (SC games). These games model
problems where the goal is to distribute fare inspectors over a toll network.
In an SC game, the pure strategies of network users correspond to
paths in a graph, and the pure strategies of the inspectors
are subset of edges to be controlled.
Although SC games are not zero-sum, we show that a Nash equilibrium
can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is
more relevant for this problem, but we show that this is NP-hard.
However, we give some bounds on the \emph{price of spite},
which measures how the
payoff of the inspector
degrades when committing to a Nash equilibrium.
Finally, we demonstrate the quality of these bounds for a real-world application,
namely the enforcement of a truck toll on German motorways.
We present a new semidefinite representation for the trace of
a real function f applied to symmetric matrices, when a
semidefinite representation of the convex function f is known. Our construction
is intuitive, and yields a representation that is more compact than the previously known one.
We also show with the help of matrix geometric means and the Riemannian metric of the set of positive definite matrices
that for a rational number p in the interval (0,1],
the matrix X raised to the exponent p is the largest element
of a set represented by linear matrix inequalities.
We give numerical results for a problem inspired from the theory
of experimental designs, which show that the new semidefinite programming formulation
yields a speed-up factor in the order of 10.
We study a family of combinatorial optimization problems defined by a parameter $p\in[0,1]$, which involves spectral functions applied to positive semidefinite matrices, and has some application in the theory of optimal experimental design. This family of problems tends to a generalization of the classical maximum coverage problem as $p$ goes to $0$, and to a trivial instance of the knapsack problem as $p$ goes to $1$. In this article, we establish a matrix inequality which shows that the objective function is submodular for all $p\in[0,1]$, from which it follows that the greedy approach, which has often been used for this problem, always gives a design within $1-1/e$ of the optimum. We next study the design found by rounding the solution of the continuous relaxed problem, an approach which has been applied by several authors. We prove an inequality which generalizes a classical result from the theory of optimal designs, and allows us to give a rounding procedure with an approximation factor which tends to $1$ as $p$ goes to $1$.
In the past few years several applications of optimal experimental designs have emerged to optimize the measurements in communication networks. The optimal design problems arising from this kind of applications share three interesting properties: (i) measurements are only available at a small number of locations of the network; (ii) each monitor can simultaneously measure several quantities, which can be modeled by ``multiresponse experiments"; (iii) the observation matrices depend on the topology of the network. In this paper, we give an overview of these experimental design problems and recall recent results for the computation of optimal designs by Second Order Cone Programming (SOCP). New results for the network-monitoring of a discrete time process are presented. In particular, we show that the optimal design problem for the monitoring of an AR1 process can be reduced to the standard form and we give experimental results.
We show that a class of semidefinite programs (SDP) admits a solution that is a positive semidefinite matrix of rank at most $r$, where $r$ is the rank of the matrix involved in the objective function of the SDP. The optimization problems of this class are semidefinite packing problems, which are the SDP analogs to vector packing problems. Of particular interest is the case in which our result guarantees the existence of a solution of rank one: we show that the computation of this solution actually reduces to a Second Order Cone Program (SOCP). We point out an application in statistics, in the optimal design of experiments.