Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Algorithms for Classical Orthogonal Polynomials

Zitieren Sie bitte immer diese URN: urn:nbn:de:0297-zib-2340
  • \begin{enumerate} \item[] {{\small In this article explicit formulas for the recurrence equation \[ p_{n+1}(x)=(A_n\,x+B_n)\,p_n(x)-C_n\,p_{n-1}(x) \] and the derivative rules \[ \sigma(x)\,p_n'(x)=\alpha_n\,p_{n+1}(x)+\beta_n\,p_n(x)+\gamma_n\,p_{n-1}(x) \] and \[ \sigma(x)\,p_n'(x)=(\tilde\alpha_n\,x+\tilde\beta_n)\,p_n(x)+ \tilde\gamma_n\,p_{n-1}(x) \] respectively which are valid for the orthogonal polynomial solutions $p_n(x)$ of the differential equation \[ \sigma(x)\,y''(x)+\tau(x)\,y'(x)+\lambda_n\,y(x)=0 \] of hypergeometric type are developed that depend {\sl only} on the coefficients $\sigma(x)$ and $\tau(x)$ % and $\lambda_n$ which themselves are polynomials w.r.t.\ $x$ of degrees not larger than $2$ and $1$% and $0$ , respectively. Partial solutions of this problem had been previously published by Tricomi, and recently by Y\'a\~nez, Dehesa and Nikiforov. Our formulas yield an algorithm with which it can be decided whether a given holonomic recurrence equation (i.e.\ one with polynomial coefficients) generates a family of classical orthogonal polynomials, and returns the corresponding data (density function, interval) including the standardization data in the affirmative case. In a similar way, explicit formulas for the coefficients of the recurrence equation and the difference rule \[ \sigma(x)\,\nabla p_n(x)= \alpha_n\,p_{n+1}(x)+\beta_n\,p_n(x)+\gamma_n\,p_{n-1}(x) \] of the classical orthogonal polynomials of a discrete variable are given that depend only on the coefficients $\sigma(x)$ and $\tau(x)$ of their difference equation \[ \sigma(x)\,\Delta\nabla y(x)+\tau(x)\,\Delta y(x)+\lambda_n\,y(x)=0 \;. \] Here \[ \Delta y(x)=y(x+1)-y(x) \quad\quad\mbox{and}\quad\quad \nabla y(x)=y(x)-y(x-1) \] denote the forward and backward difference operators, respectively. In particular this solves the corresponding inverse problem to find the classical discrete orthogonal polynomial solutions of a given holonomic recurrence equation. \iffalse Furthermore, an algorithmic approach to deduce these and similar properties is presented which is implementable in computer algebra, and which moreover generates relations between different standardizations of the polynomial system considered. \fi }} \end{enumerate}

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Wolfram Koepf, Dieter Schmersau
Dokumentart:ZIB-Report
Datum der Erstveröffentlichung:15.08.1996
Schriftenreihe (Bandnummer):ZIB-Report (SC-96-23)
ZIB-Reportnummer:SC-96-23
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.