## ZIB-Report

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (1501)
- Doctoral Thesis (10)
- Habilitation (10)

#### Keywords

- KOBV (27)
- Bibliotheksverbund (20)
- Kooperativer Bibliotheksverbund Berlin-Brandenburg (17)
- integer programming (17)
- integer programming (16)
- mixed integer programming (16)
- optimal control (15)
- optimal control (12)
- branch-and-bound (11)
- Integer Programming (9)

#### Institute

- ZIB Allgemein (909)
- Mathematical Optimization (328)
- Numerical Mathematics (170)
- Mathematics of Transportation and Logistics (56)
- Computational Medicine (54)
- Visual Data Analysis (52)
- Scientific Information (48)
- Mathematical Optimization Methods (33)
- Distributed Algorithms and Supercomputing (29)
- Computational Molecular Design (15)

- 17-51
- Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST (2017)
- In gradient-based methods for parabolic optimal control problems, it is necessary to solve both the state equation and a backward-in-time adjoint equation in each iteration of the optimization method. In order to facilitate fully parallel gradient-type and nonlinear conjugate gradient methods for the solution of such optimal control problems, we discuss the application of the parallel-in-time method PFASST to adjoint gradient computation. In addition to enabling time parallelism, PFASST provides high flexibility for handling nonlinear equations, as well as potential extra computational savings from reusing previous solutions in the optimization loop. The approach is demonstrated here for a model reaction-diffusion optimal control problem.

- 17-49
- A multi scale perturbation expansion approach for Markov state modeling of non-stationary molecular dynamics (2017)
- We investigate metastable dynamical systems subject to non-stationary forcing as they appear in molecular dynamics for systems driven by external fields. We show, that if the strength of the forcing is inversely proportional to the length of the slow metastable time scales of the unforced system, then the effective behavior of the forced system on slow time scales can be described by a low-dimensional reduced master equation. Our construction is explicit and uses the multiscale perturbation expansion method called two-timing, or method of multiple scales. The reduced master equation—a Markov state model—can be assembled by constructing two equilibrium Markov state models; one for the unforced system, and one for a slightly perturbed one.

- 17-48
- Cost Projection Methods for the Shortest Path Problem with Crossing Costs (2017)
- Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms’ performance on real-world flight trajectory optimization instances, obtaining very good à posteriori error bounds.

- 17-47
- A dynamic model to simulate potassium balance in dairy cows. (2017)
- High performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one of them being potassium, is indispensable for the prevention of imbalances. The potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, it is closely related with the glucose and electrolyte metabolism. In this paper, we present a dynamical model for the potassium balance in lactating and non-lactating dairy cows based on ordinary differential equations. Parameter values are obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for three different scenarios: potassium balance in (i) non-lactating cows with varying feed intake, (ii) non-lactating cows with varying potassium fraction in the diet, and (iii) lactating cows with varying milk production levels. The results give insights into the short and long term potassium metabolism, providing an important step towards the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.

- 17-46
- Strong Relaxations for the Train Timetabling Problem using Connected Configurations (2017)
- The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.

- 17-34
- Measuring the impact of branching rules for mixed-integer programming (2017)
- Branching rules are an integral component of the branch-and-bound algorithm typically used to solve mixed-integer programs and subject to intense research. Different approaches for branching are typically compared based on the solving time as well as the size of the branch-and-bound tree needed to prove optimality. The latter, however, has some flaws when it comes to sophisticated branching rules that do not only try to take a good branching decision, but have additional side-effects. We propose a new measure for the quality of a branching rule that distinguishes tree size reductions obtained by better branching decisions from those obtained by such side-effects. It is evaluated for common branching rules providing new insights in the importance of strong branching.

- 17-37
- Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion (2017)
- We present a Newton-like method to solve inverse problems and to quantify parameter uncertainties. We apply the method to parameter reconstruction in optical scatterometry, where we take into account a priori information and measurement uncertainties using a Bayesian approach. Further, we discuss the influence of numerical accuracy on the reconstruction result.

- 17-45
- Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem (2017)
- Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.

- 17-43
- Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization (2017)
- We investigate how the numerical properties of the LP relaxations evolve throughout the solution procedure in a solver employing the branch-and-cut algorithm. The long-term goal of this work is to determine whether the effect on the numerical conditioning of the LP relaxations resulting from the branching and cutting operations can be effectively predicted and whether such predictions can be used to make better algorithmic choices. In a first step towards this goal, we discuss here the numerical behavior of an existing solver in order to determine whether our intuitive understanding of this behavior is correct.

- 17-44
- Integrating Lipschitzian Dynamical Systems using Piecewise Algorithmic Differentiation (2017)
- In this article we analyze a generalized trapezoidal rule for initial value problems with piecewise smooth right hand side \(F:R^n \to R^n\) based on a generalization of algorithmic differentiation. When applied to such a problem, the classical trapezoidal rule suffers from a loss of accuracy if the solution trajectory intersects a nondifferentiability of \(F\). The advantage of the proposed generalized trapezoidal rule is threefold: Firstly, we can achieve a higher convergence order than with the classical method. Moreover, the method is energy preserving for piecewise linear Hamiltonian systems. Finally, in analogy to the classical case we derive a third order interpolation polynomial for the numerical trajectory. In the smooth case the generalized rule reduces to the classical one. Hence, it is a proper extension of the classical theory. An error estimator is given and numerical results are presented.