## ZIB-Report

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (1754)
- Doctoral Thesis (10)
- Habilitation (10)
- Article (5)
- In Proceedings (1)

#### Keywords

- integer programming (33)
- mixed integer programming (32)
- optimal control (29)
- KOBV (28)
- Kooperativer Bibliotheksverbund Berlin-Brandenburg (24)
- Bibliotheksverbund (20)
- Mixed Integer Programming (20)
- Integer Programming (17)
- line planning (14)
- mixed-integer programming (14)

#### Institute

- ZIB Allgemein (909)
- Mathematical Optimization (429)
- Numerical Mathematics (196)
- Visual and Data-centric Computing (92)
- Visual Data Analysis (88)
- Mathematical Optimization Methods (71)
- Mathematics of Transportation and Logistics (66)
- Computational Medicine (62)
- Digital Data and Information for Society, Science, and Culture (55)
- Applied Algorithmic Intelligence Methods (47)

24-03

The decarbonization of the European energy system demands a rapid and comprehensive transformation while securing energy supplies at all times. Still, natural gas plays a crucial role in this process. Recent unexpected events forced drastic changes in gas routes throughout Europe. Therefore, operational-level analysis of the gas transport networks and technical capacities to cope with these transitions using unconventional scenarios has become essential.
Unfortunately, data limitations often hinder such analyses. To overcome this challenge, we propose a mathematical model-based scenario generator that enables operational analysis of the European gas network using open data. Our approach focuses on the consistent analysis of specific partitions of the gas transport network, whose network topology data is readily available. We generate reproducible and consistent node-based gas in/out-flow scenarios for these defined network partitions to enable feasibility analysis and data quality assessment.
Our proposed method is demonstrated through several applications that address the feasibility analysis and data quality assessment of the German gas transport network. By using open data and a mathematical modeling approach, our method allows for a more comprehensive understanding of the gas transport network's behavior and assists in decision-making during the transition to decarbonization.

24-02-29

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver.

24-01

Periodic timetabling is a challenging planning task in public transport.
As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turnarounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network.

23-29

We present a heuristic solution approach for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). The task of this problem is to assign a sequence of trips to each of the vehicles
and to schedule their maintenance such that all trips can be operated. Here, the health states of the vehicles are considered to be random variables distributed by a family of probability distribution functions, and the maintenance services should be scheduled based on the failure probability of the vehicles. The proposed algorithm first generates a solution by solving an integer linear program and then heuristically improves this solution by applying a local search procedure. For this purpose, the trips assigned to the vehicles are split up and recombined, whereby additional deadhead trips can be inserted between the partial assignments. Subse-
quently, the maintenance is scheduled by solving a shortest path problem in a state-expanded version of a space-time graph restricted to the trips of the individual vehicles. The solution approach is tested and evaluated on a set of test instances based on real-world timetables.

23-30

High-dimensional high-frequency time series prediction with a mixed integer optimisation method
(2023)

23-28

A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.

23-27

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25% gap is successfully obtained, and computing an LB with 1.0% gap is shown to be still quite difficult.

23-26

This article studies a combination of the two state-of-the-art algorithms for the exact solution of linear programs (LPs) over the rational numbers, i.e., without any roundoff errors or numerical tolerances. By integrating the method of precision boosting inside an LP iterative refinement loop, the combined algorithm is able to leverage the strengths of both methods: the speed of LP iterative refinement, in particular in the majority of cases when a double-precision floating-point solver is able to compute approximate solutions with small errors, and the robustness of precision boosting whenever extended levels of precision become necessary.
We compare the practical performance of the resulting algorithm with both puremethods on a large set of LPs and mixed-integer programs (MIPs). The results show that the combined algorithm solves more instances than a pure LP iterative refinement approach, while being faster than pure precision boosting. When embedded in an exact branch-and-cut framework for MIPs, the combined algorithm is able to reduce the number of failed calls to the exact LP solver to zero, while maintaining the speed of the pure LP iterative refinement approach.

23-24

The currently most popular approach to handle non-linear battery behavior for electric vehicle scheduling is to use a linear spline interpolation of the charge curve. We show that this can lead to approximate models that underestimate the charge duration and overestimate the state of charge, which is not desirable. While the error is of second order with respect to the interpolation step size, the associated mixed-integer linear programs do not scale well with the number of spline segments. It is therefore recommendable to use coarse interpolation grids adapted to the curvature of the charge curve, and to include sufficient safety margins to ensure solutions of approximate models remain feasible subjected to the exact charge curve.

23-23

The Periodic Event Scheduling Problem (PESP) is a notoriously hard combinatorial optimization problem, essential for the design of periodic timetables in public transportation. The coefficients of the integer variables in the standard mixed integer linear programming formulations of PESP are the period time, e.g., 60 for a horizon of one hour with a resolution of one minute. In many application scenarios, lines with different frequencies have to be scheduled, leading to period times with many divisors. It then seems natural to consider derived instances, where the period time is a divisor of the original one, thereby smaller, and bounds are scaled and rounded accordingly. To this end, we identify two rounding schemes: wide and tight. We then discuss the approximation performance of both strategies, in theory and practice.