## ZIB-Report

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (1657)
- Doctoral Thesis (10)
- Habilitation (10)
- Article (3)

#### Keywords

- integer programming (33)
- mixed integer programming (30)
- KOBV (28)
- optimal control (27)
- Kooperativer Bibliotheksverbund Berlin-Brandenburg (24)
- Bibliotheksverbund (20)
- Integer Programming (17)
- Mixed Integer Programming (16)
- column generation (13)
- constraint integer programming (13)

#### Institute

- ZIB Allgemein (909)
- Mathematical Optimization (423)
- Numerical Mathematics (191)
- Visual Data Analysis (86)
- Mathematical Optimization Methods (71)
- Mathematics of Transportation and Logistics (64)
- Computational Medicine (60)
- Scientific Information (51)
- Distributed Algorithms and Supercomputing (35)
- Therapy Planning (22)

20-22

This is the documentation on current results of a research project jointly conducted by Stiftung Deutsche Kinemathek (SDK) and Zuse Institute Berlin (ZIB). In this project, we are working on a practical yet sustainable archiving solution for audiovisual material.
In the course of the project two major obstacles were identified: 1) Metadata is collected according to standards established in the community but lacking a prescribed serialisation format. 2) Storage size of audiovisual material and time scales of production processes make it often impractical to defer submission for archival storage until all components have arrived and can be processed in one go.

20-20

Conflict Analysis for MINLP
(2020)

The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality.

20-19

We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib.

20-21

Model reduction of large Markov chains is an essential step in a wide array of techniques for understanding complex systems and for efficiently learning structures from high-dimensional data. We present a novel aggregation algorithm for compressing such chains that exploits a specific low-rank structure in the transition matrix which, e.g., is present in metastable systems, among others. It enables the recovery of the aggregates from a vastly undersampled transition matrix which in practical applications may gain a speedup of several orders of mag- nitude over methods that require the full transition matrix. Moreover, we show that the new technique is robust under perturbation of the transition matrix. The practical applicability of the new method is demonstrated by identifying a reduced model for the large-scale traffic flow patterns from real-world taxi trip data.

20-17

The aim of this thesis is to deepen our understand of how
IDA* heuristics influence the number of nodes expanded during
search. To this end, we develop Korf's formula for the number
of expanded nodes into a heuristic quality η which
expresses the quality of a heuristic function as a constant factor
on the number of expanded nodes, independent of a particular problem
instance.
We proceed to show how to compute η for some common kinds of
heuristics and how to estimate η by means of a random sample for
arbitrary heuristics. Using the value of η for some concrete
examples, we then inspect for which parts of the search space the
values of h(v) are particularly critical to the performance of the
heuristic, allowing us to build better heuristics for future problems.
This report originally appeared as a master thesis at Humboldt
University of Berlin.

20-14

Tom Streubel has observed that for functions in abs-normal form, generalized Taylor expansions of arbitrary order $\bar d-1$ can be generated by algorithmic piecewise differentiation. Abs-normal form means that the real or vector valued function is defined by an evaluation procedure that involves the absolute value function $|...|$ apart from arithmetic operations and $\bar d$ times continuously differentiable univariate intrinsic functions. The additive terms in Streubel's expansion are abs-polynomial, i.e. involve neither divisions nor intrinsics. When and where no absolute values occur, Moore's recurrences can be used to propagate univariate Taylor polynomials through the evaluation procedure with a computational effort of $\mathcal O({\bar d}^2)$, provided all univariate intrinsics are defined as solutions of linear ODEs. This regularity assumption holds for all standard intrinsics, but for irregular elementaries one has to resort to Faa di Bruno's formula, which has exponential complexity in $\bar d$. As already conjectured we show that the Moore recurrences can be adapted for regular intrinsics to the abs-normal case. Finally, we observe that where the intrinsics are real analytic the expansions can be extended to infinite series that converge absolutely on spherical domains.

20-18

Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation.
One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a $\mu$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017).
MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction.

20-16

Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.

20-15

Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib.