
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf

Wolfram Koepf

Dieter Schmersau ∗

Algorithms for Classical Orthogonal Polynomials

∗ Fachbereich Mathematik und Informatik der Freien Universiẗat Berlin
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Abstract:

In this article explicit formulas for the recurrence equation

pn+1(x) = (An x+Bn) pn(x)− Cn pn−1(x)

and the derivative rules

σ(x) p′n(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x)

and
σ(x) p′n(x) = (α̃n x+ β̃n) pn(x) + γ̃n pn−1(x)

respectively which are valid for the orthogonal polynomial solutions pn(x) of the differential
equation

σ(x) y′′(x) + τ(x) y′(x) + λn y(x) = 0

of hypergeometric type are developed that depend only on the coefficients σ(x) and τ(x) which
themselves are polynomials w.r.t. x of degrees not larger than 2 and 1, respectively.

Partial solutions of this problem had been previously published by Tricomi, and recently by
Yáñez, Dehesa and Nikiforov.

Our formulas yield an algorithm with which it can be decided whether a given holonomic recur-
rence equation (i.e. one with polynomial coefficients) generates a family of classical orthogonal
polynomials, and returns the corresponding data (density function, interval) including the stan-
dardization data in the affirmative case.

In a similar way, explicit formulas for the coefficients of the recurrence equation and the difference
rule

σ(x)∇pn(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x)

of the classical orthogonal polynomials of a discrete variable are given that depend only on the
coefficients σ(x) and τ(x) of their difference equation

σ(x)Δ∇y(x) + τ(x)Δy(x) + λn y(x) = 0 .

Here
Δy(x) = y(x+ 1)− y(x) and ∇y(x) = y(x)− y(x− 1)

denote the forward and backward difference operators, respectively. In particular this solves the
corresponding inverse problem to find the classical discrete orthogonal polynomial solutions of a
given holonomic recurrence equation.
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� Polynomials of the Hypergeometric Type

A long-standing problem in the theory of special functions whose solution can be very helpful
in applied mathematics as well as in many quantum-mechanical problems of physics [18],
is the determination of the differentiation formulas of the hypergeometric-type orthogonal
polynomials pn(x) only from the coefficients of the differential equation

σ(x) y′′(x) + τ(x) y′(x) + λn y(x) = 0 (1)

which is satisfied by these polynomials

y(x) = pn(x) = kn x
n + . . . (n ∈ N0 := {0, 1, 2, . . .}, kn �= 0) . (2)

The coefficients σ(x), τ(x) and λn turn out to be themselves polynomials w.r.t. x of degrees
not larger than 2, 1 and 0, respectively.
This problem was partially solved by Tricomi ([21], Chapter IV) in the sense that he was able
to calculate the coefficients α̃n, β̃n and γ̃n of the derivative rule

σ(x) p′n(x) = (α̃n x+ β̃n) pn(x) + γ̃n pn−1(x) . (3)

However, his formula for β̃n was not only in terms of the coefficients of (1) and kn, but
furthermore the second highest coefficients of pn(x) were involved, and to evaluate γ̃n, he
needed to know also the coefficients of the recurrence equation

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x) (4)

another structural property of orthogonal polynomial systems.
Since the polynomials pn(x) given by (2) are completely determined by the differential equation
and their leading coefficients kn (n ∈ N0), it is desirable to obtain the recurrence equation (4)
and the derivative rule (3) from these informations alone.
Recently, Yáñez, Dehesa and Nikiforov [23] presented such formulas which, however, are ad-
ditionally in terms of the constant Dn, given by a representation of the type

pn(x) =
Dn

ρ(x)

∫
C

σn(s) ρ(s)

(s− x)n+1
ds (5)

for pn(x), ρ(x) being solution of the equation (σρ)′ = τρ, and C being a contour satisfying
certain boundary conditions. Their development is more general in the sense that they did not
assume that n is an integer. On the other hand, the assumption that n is an integer implies
that the contour C is closed, the integral representation (5) being equivalent to the Rodrigues
representation

pn(x) =
En

ρ(x)

dn

dxn

(
ρ(x)σ(x)n

)
(6)

where

Dn =
n!

2πi
En , (7)

and the solutions are classical orthogonal polynomials with density ρ(x).
In this article, we represent the coefficients of both (3) and (4) in terms of σ(x), τ(x) and the
term ratio kn+1/kn alone, hence giving a complete solution of the proposed problem.
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It is clear that our formulas should depend additionally on the leading coefficients kn, since
such a standardization can be prescribed arbitrarily. If one takes the monic standardization,
i.e. kn ≡ 1, then the formulas in fact depend only on the coefficients of the differential equation.
For the classical orthogonal polynomials our formulas are stronger than Yáñez’, Dehesa’s and
Nikiforov’s result since kn is intrinsic part of pn(x), whereas the constants Dn, En are not.
Moreover, we will give Dn and En in terms of the coefficients of the differential equation, too.
Algebraically two identities (differential equation and recurrence equation, e.g.) are needed to
deduce the third one (derivative rule, e.g.), see [8], whereas here (kind of magic) we would like
to deduce two from one. That this is possible is due to the analytic knowledge that orthogonal
polynomial solutions of the differential equation (1) satisfy some structural properties, namely,
the recurrence equation and derivative rule take special forms.
We make the general assumption that our polynomials pn(x) are orthogonal w.r.t. a measure
μ, i.e. ∫

I

pn(x) pm(x) dμ(x) =

⎧⎨
⎩

0 if m �= n

hn �= 0 if m = n
(8)

where I denotes an appropriate integration path, for example a real interval.
Major tools in our development are the following well-known structural properties of such
families of orthogonal polynomials.

Lemma 1 Any system of polynomials {pn(x) | n ∈ N0}, pn being of exact degree n, orthogo-
nal with respect to a measure μ, satisfies a three-term recurrence equation of the form (4)

pn+1(x) = (An x+Bn) pn(x)− Cn pn−1(x) (n ∈ N0 , p−1(x) ≡ 0) ,

An, Bn and Cn not depending on x.

Proof: This property is well-known (see e.g. [21], Chapter IV). To prove it, one substitutes
(2), equates the coefficients of xn+1, and gets immediately that

An =
kn+1

kn
. (9)

With this choice, we study the difference pn+1(x) − An x pn(x). Since this is a polynomial of
degree not larger than n, it can be decomposed as

pn+1(x) −An x pn(x) =
n∑

j=0

dj pn(x) .

We choose m ≤ n− 2 and multiply by pm(x). Integrating with respect to μ yields∫
I

pm(x) pn+1(x) dμ(x) −
∫
I

pm(x)An x pn(x) dμ(x) = dm hm

where on the right hand side (8) was applied. Both left hand integrals vanish since pm(x) is
orthogonal to pn+1(x) and since xpm(x) as a polynomial of degree not larger than n − 1 is
orthogonal to pn(x), implying dm = 0. This gives the result. �

The second important structural property for our considerations is given by
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Lemma 2 Any system of polynomials {pn(x) | n ∈ N0}, pn being of exact degree n, that
are solutions of the differential equations (1) and furthermore orthogonal with respect to a
measure μ(x) = ρ(x) dx having weight function ρ(x) ≥ 0, satisfies a derivative rule of the
form (3)

σ(x) p′n(x) = (α̃n x+ β̃n) pn(x) + γ̃n pn−1(x) (n ∈ N := {1, 2, 3, . . .}) ,

α̃n, β̃n and γ̃n not depending on x.

Proof: Substituting (2) and equating the coefficients of xn+1, one gets immediately that

α̃n = an . (10)

In [13], § 5 it is shown by an elementary argument that under the given conditions the solutions
pn(x) of the differential equations (1) are orthogonal with respect to the weight function

ρ(x) :=
C

σ(x)
e
∫

τ(x)
σ(x)

dx ≥ 0 , (11)

given by Pearson’s differential equation

d

dx

(
σ(x) ρ(x)

)
= τ(x) ρ(x)

for a suitable constant C, in a suitable interval I (depending on the zeros of σ(x)). Hence
multiplying (1) by ρ(x), the differential equation takes the selfadjoint form

d

dx

(
σ(x) ρ(x) y′(x)

)
+ λn ρ(x) y(x) = 0 .

Using this identity, Tricomi showed that ([21], IV (4.10))∫
I

σ(x) ρ(x) p′n(x) f(x) dx = 0 (12)

for any polynomial f(x) of degree ≤ n− 2. If (10) holds, then the degree of σ(x) p′n(x)− α̃n x
is ≤ n. Hence one can write

σ(x) p′n(x)− α̃n x =
n∑

j=0

ej pn(x) .

As above, from (12) one can deduce that ej = 0 for 0 ≤ j ≤ n− 2 (see [21], Chapter IV). �

An immediate consequence is the following

Corollary 1 Any system of polynomials {pn(x) | n ∈ N0}, pn being of exact degree n, that
are solutions of the differential equation (1) and furthermore orthogonal with respect to a
measure μ(x) = ρ(x) dx having weight function ρ(x) ≥ 0, satisfies a derivative rule of the form

σ(x) p′n(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x) (n ∈ N) , (13)

αn, βn and γn not depending on x.
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Proof: Substituting (2) in (13), and equating the coefficients of xn+1, one gets immediately
that

αn = an
kn
kn+1

. (14)

Substituting (4) in (3) one gets moreover

σ(x) p′n(x) = (α̃n x+ β̃n) pn(x) + γ̃n pn−1(x)

=

(
α̃n

An

(
pn+1(x) −Bn pn(x) + Cn pn−1(x)

)
+ β̃n

)
pn(x) + γ̃n pn−1(x) ,

hence (13) is valid with

αn =
α̃n

An
, βn = β̃n − α̃n

Bn

An
, γn = γ̃n + α̃n

Cn

An
. �

� Classical Orthogonal Polynomials of an Interval

In this section we give the proposed explicit recurrence equation and derivative rule formulas.
Assume a family of differential equations (1) is given for n ∈ N0 , with continuous functions
σ(x), τ(x), and constants λn, and we search for polynomial solutions (2) of degree n. Then
since p1(x) is linear, one deduces that τ(x) must be an at most linear polynomial, and since
p2(x) is quadratic, one deduces that σ(x) must be an at most quadratic polynomial [3]. Hence
we may assume that

σ(x) := ax2 + bx+ c , τ(x) := dx+ e . (15)

Equating coefficients of the highest powers xn in (1) for generic pn(x), given by (2), one
deduces that moreover

an(n− 1) + dn+ λn = 0 or λn = −(an(n− 1) + dn) . (16)

Hence only if the differential equation takes the special form

(ax2 + bx+ c) y′′(x) + (dx+ e) y′(x) − (an(n− 1) + dn) y(x) = 0 , (17)

it can have polynomial solutions.
Moreover we can assume that λn �= 0 for n ∈ N, hence a(n − 1) + d �= 0 for n ∈ N since
otherwise no orthogonal polynomial solutions can exist. This is discussed in detail in [13]. In
particular, d �= 0.
In the following theorem, we give explicit representations of the corresponding recurrence
equation and derivative rule in terms of the given a, b, c, d, e and the term ratio kn+1/kn.

Theorem 1 Let pn(x) = kn x
n + . . . (n ∈ N0 ) be a family of polynomial solutions of the

system of differential equations (17) that are orthogonal with respect to a weight function
ρ(x). Then the derivative rule (13)

σ(x) p′n(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x)

is valid with

αn = an
kn

kn+1
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βn =
n (a (n− 1) + d) (b d − 2 a e)

(2 a (n− 1) + d) (2 an + d)
(18)

γn =
n (a(n−1) + d)(a(n−2) + d)(n (an+ d) (4 a c−b2)+a e2+c d2−b d e)

(a (2n−1)+d) (a(2n−3)+d) (2a(n−1) + d)2
kn
kn−1

, (19)

and the recurrence equation (4)

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x)

is valid with

An =
kn+1

kn

Bn =
kn+1

kn
· 2bn (a(n− 1) + d) + e(d − 2a)

(2a(n− 1) + d) (2an+ d)
(20)

and

Cn = −kn+1

kn

γn
a(n− 1) + d

, (21)

γn being given by (19).

Proof: The values of An and αn were already obtained in Lemma 1 and Corollary 1.
By Lemma 1 the polynomials satisfy a recurrence equation of type (4):

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x) . (22)

Next, we differentiate (22) twice and get

p′n+1(x) = An pn(x) + (An x+Bn) p
′
n(x)− Cn p

′
n−1(x) (23)

and
p′′n+1(x) = 2An p

′
n(x) + (An x+Bn) p

′′
n(x) − Cn p

′′
n−1(x) .

We multiply the last equation by σ(x)

σ(x) p′′n+1(x) = 2An σ(x) p
′
n(x) + (An x+Bn)σ(x) p

′′
n(x) − Cn σ(x) p

′′
n−1(x)

and use the differential equation to replace the second derivatives by those of lower order

−
(
τ(x) p′n+1(x) + λn+1 pn+1(x)

)
= 2An σ(x) p

′
n(x) − (An x+Bn)

(
τ(x) p′n(x) + λn pn(x)

)
+ Cn

(
τ(x) p′n−1(x) + λn−1 pn−1(x)

)
.

After substituting (23) on the left hand side, and subtracting τ (Ax + B) p′n − τ Cn p
′
n−1, we

arrive at

−τ(x)An pn(x) − λn+1 pn+1(x) = 2An σ(x) p
′
n(x) − (An x+Bn)λn pn(x) + Cn λn−1 pn−1(x) .

Next, on the right hand side, we replace (An x+Bn) pn(x) by pn+1(x)+Cn pn−1(x) according
to (22), and get

−τ(x)An pn(x) − λn+1 pn+1(x) = 2An σ(x) p
′
n(x)− λn pn+1(x) + (λn−1 − λn)Cn pn−1(x) ,
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or rewritten

(λn − λn+1) pn+1(x) = An (2σ(x) p
′
n(x) + τ(x) pn(x)) + (λn−1 − λn)Cn pn−1(x) .

Now we substitute the representation of Corollary 1

σ(x) p′n(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x)

to deduce(
(λn−λn+1)−2An αn

)
pn+1(x) = An (2βn+τ(x)) pn(x)+

(
2An γn+(λn−1−λn)Cn

)
pn−1(x)

after subtracting 2An αn pn+1(x). Replacing pn+1(x) according to (22), we arrive at the
identity (

An (2βn + τ(x)) + (2An αn − (λn − λn+1))(An x+Bn)
)
pn(x) =

−
(
((λn − λn+1) − 2An αn)Cn + 2An γn + (λn−1 − λn)Cn

)
pn−1(x) .

Since pn(x) is a polynomial of exact degree n, this relation can only be valid if the coefficients
of both pn(x) and pn−1(x) vanish, since otherwise the polynomial on the left hand side has
degree ≥ n whereas the polynomial on the right hand side has degree n− 1, a contradiction.
The coefficients must vanish as polynomials in x, and equating coefficients we are led to the
three equations

An (λn+1 − λn + d+ 2αn An) = 0 .

An e + 2AnBn αn + 2An βn −Bn λn +Bn λn+1 = 0

and
2An Cn αn − 2An γn − Cn λn−1 + Cn λn+1 = 0 .

Whereas the first of these equation does not contain any news but restates a relationship
between An, αn and λn, the second and third of these equations (using (9), (14) and (16))
can be rewritten as

Bn =
(e+ 2βn)

d

kn+1

kn
(24)

and as (21). Hence Bn and Cn are known as soon as βn and γn are.
We finally need two more equations to find βn and γn. To deduce one of these equations, and
to find βn, and hence Bn, we substitute

pn(x) = kn x
n + k′n x

n−1 + k′′n x
n−2 + . . . (25)

in the three equations considered, namely the differential equation, the recurrence equation
and the derivative rule. As we already saw, equating the coefficients of the highest powers of
x yields (16), (9) and (14). If we equate the coefficients of the next highest powers of x, we
get three more equations, involving two more variables though, namely k′n and k′n+1. These
are the equations

b n kn − e n kn − b n2 kn − 2 a k′n + d k′n + 2 an k′n = 0 , (26)

Bn kn +An k
′
n − k′n+1 = 0 , (27)

and
b n kn − βn kn − a k′n + an k′n − αn k

′
n+1 = 0 . (28)

7



Equation (26) immediately gives

k′n
kn

=
n (b (n− 1) + e)

2 a (n− 1) + d
, (29)

whereas from (27)–(28) one can eliminate k′n+1. This gives a second equation between Bn and
βn which together with (24) and (29) yields (18) and (20).
To deduce γn, we equate the coefficients of the next highest powers in the differential equation,
recurrence equation and derivative rule, introducing two more auxiliary variables k′′n and k′′n+1

which can be eliminated. This procedure generates one more equation between Cn and γn
finally deducing (19). �

Note that the results given in Theorem 1 can also be deduced completely automatically by
elimination methods based on Gr̈obner basis calculations. With the computer algebra systems
Maple and REDUCE we were successful doing so. For the purpose of finding An, Bn, Cn, we
substitute (25) in the differential equations for pn(x) and for pn+1(x), and in the recurrence
equation. Equating the three highest coefficients in any of these three equations yields nine
nonlinear equations in the nine unknowns

An, Bn, Cn, λn, λn+1, k
′
n, k

′
n+1, k

′′
n, k

′′
n+1 .

By a Gröbner basis computation (invoked by the solve command of the utilized computer
algebra system) it turns out that there is a unique solution, given by Theorem 1, see also
Corollary 4 and (33). Note that therefore the formulas for An, Bn, and Cn of Theorem 1 are
valid without the hypothesis of a weight function ρ(x).
Similarly, to find αn, βn, γn, we substitute (25) in the differential equations for pn(x) and for
pn+1(x), and in the derivative rule. Equating the three highest coefficients in any of these
three equations yields nine nonlinear equations in the nine unknowns

αn, βn, γn, λn, λn+1, k
′
n, k

′
n+1, k

′′
n, k

′′
n+1 ,

and a Gröbner basis computation generates the unique solution, given by Theorem 1. Note
that we were not able to separate the two problems in a similar way based on hand calculations.

Our theorem has immediate consequences.

Corollary 2 Let pn(x) = kn x
n + . . . (n ∈ N0 ) be a family of polynomial solutions of the

system of differential equations (17) that are orthogonal with respect to a weight function
ρ(x). Then the derivative rule (3)

σ(x) p′n(x) = (α̃n x+ β̃n) pn(x) + γ̃n pn−1(x)

is valid with
α̃n = an

β̃n =
(a b (n− 1) − a e + b d) n

2 a(n− 1) + d
(30)

γ̃n = γn − αnCn =
a (2n− 1) + d

a (n− 1) + d
γn , (31)

αn, γn and Cn being given by Theorem 1.
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Proof: Substituting (4) in (13) yields (3) with

α̃n = αnAn , β̃n = αn Bn + βn , γ̃n = γn − αnCn .

This yields the result. �

Note that Theorem 1 describes the variety of different recurrence equation formulas known
in the literature ([1], 22.7) by one single formula. Similarly all the different derivative rule
formulas ([1], 22.8) are governed by a single formula through Corollary 2.
Theorem 1 shows in particular that the recurrence equation and derivative rule can be obtained
by purely rational arithmetic whenever

kn+1

kn
∈ Q(n) ,

i.e., if kn is a hypergeometric term. This is obviously true if kn ≡ 1, i.e., in the monic case.
But also all other standardizations that are used in practice (see e.g. [1], Chapter 22) are of
this type.1

In the case of the orthonormal standardization given by

hn ≡ 1

it is not in general true that kn is a hypergeometric term. On the other hand, if kn is a
hypergeometric term, hn inherits this property.

Corollary 3 Let pn(x) = kn x
n+ . . . (n ∈ N0) be a family of orthogonal polynomial solutions

of the system of differential equations (17). Then the relation

hn+1

hn
=

(n+ 1) (an+ d)(a(n−1) + d)

(a(2n+3)+d)(a(2n+1)+d)

(
c+

b(n+1) + e

(2an+ d)2

(
(ae−bd)−abn

))
·
(
kn+1

kn

)2

(32)

is valid.

Proof: Tricomi ([21], IV (2.2), see also [1], (22.1.5)) proved that

Cn =
An

An−1

hn
hn−1

.

An application of Theorem 1 yields (32). �

Next we would like to give a general formula for the term ratio of the coefficients k′n in terms
of the given term ratio of kn.

Corollary 4 Let pn(x) = kn x
n+k′n xn−1+ . . . (n ∈ N0 ) be a family of orthogonal polynomial

solutions of the system of differential equations (17). Then the relation

k′n+1

k′n
=

n+ 1

n
· (bn+ e)(2a(n − 1) + d)

(b(n− 1) + e)(2an + d)
· kn+1

kn

is valid.

1Only in one instance, this is not so: For the Chebyshev polynomials Tn(x) one has kn+1/kn = 2 (n ∈ N),
and k1/k0 = 1. If one redefines T0(x) := 1/2, then kn+1/kn ≡ 2 ∈ Q(n).
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Proof: This follows from
k′n+1

k′n
=

k′n+1

kn+1
· kn+1

kn
· kn
k′n

using (29). �

Similarly, one gets

k′′n
kn

=
n (n− 1) (n2 b2 − 3n b2 + 2n b e + 2 c n a− 2 c a− 3 b e + 2 b2 + e2 + c d)

2 (2 an− 2 a+ d) (d − 3 a+ 2 an)
, (33)

also deduced by the automatic elimination method mentioned before, and a similar equation
for k′′n+1/k

′′
n, see the Appendix.

We furthermore obtain the term ratio of the numbers Dn of an integral representation of
type (5) considered in [23]. Note that in the orthogonal polynomial case the contour C is
closed, and hence by Cauchy’s integral formula representation (5) is equivalent to a Rodrigues
representation (6) with

Dn =
n!

2πi
En .

We get for En and Dn, respectively

Corollary 5 Let pn(x) = kn x
n+ . . . (n ∈ N0) be a family of orthogonal polynomial solutions

of the system of differential equations (17). Then pn(x) have a Rodrigues representation (6)
and an integral representation (5) with closed contour C surrounding s = x, and one has for
En and Dn the relations

Dn+1

Dn
=

(n+ 1) (a(n− 1) + d)

(a(2n− 1) + d)(2an + d)
· kn+1

kn
,

and
En+1

En
=

(a(n− 1) + d)

(a(2n− 1) + d)(2an + d)
· kn+1

kn
.

Proof: In ([23], (13)) it was shown that

1

An
=

Dn

Dn+1
· (n+ 1) (a(n− 1) + d)

(a(2n− 1) + d) (2an + d)
.

An application of (9) leads to the term ratio for Dn. The term ratio for En follows then from
(7). �

Note that Corollary 5 again describes all the different Rodrigues formulas ([1], 22.11) known
in the literature by one single formula.
It is well-known ([3], see also [4], [13]) that polynomial solutions of (1) can be classified accord-
ing to the zeros of σ(x), leading to the normal forms of Table 1 besides linear transformations
x 	→ Ax + B. The type of differential equation that we consider is invariant under such a
transformation. Orthogonal polynomial solutions according to this classification exist if and
only if the function

ρ(x) =
C

σ(x)
e
∫

τ(x)
σ(x)

dx

given by (11) yields a weight function in the interval given by the zeros of σ(x), i.e. the
corresponding integrals converge and ρ(x) ≥ 0 for some C.
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1. a = b = c = e = 0, d = 1 =⇒ pn(x) = xn,

2. a = b = e = 0, c = 1, d = −2 =⇒ pn(x) = Hn(x), the Hermite polynomials,

3. a=c=0, b=1, d=−1, e=α+1 =⇒ pn(x) = L
(α)
n (x), the Laguerre polynomials,

4a. a = 1, b = c = d = e = 0, =⇒ pn(x) = xn,

4b. a = 1, b = c = 0, d = α+ 2, e = 2 =⇒ pn(x) = B
(α)
n (x), the Bessel polynomials,

5. a=1, b=0, c=−1, d=α+β+2, e=α−β ⇒ pn(x)=P
(α,β)
n (x), the Jacobi polynomials.

Table 1: Normal Forms of Polynomial Solutions

This shows that the only orthogonal polynomial solutions are linear transforms of the Hermite,
Laguerre, and Jacobi polynomials, hence using a mathematical dictionary one can always
deduce the recurrence equation and derivative rules. Note, however, that this approach (in
general) requires the work with radicals, namely the zeros of the quadratic polynomial σ(x),
whereas our approach is completely rational: Given kn+1/kn ∈ Q(n), the recurrence equation
and derivative rules are given rationally in Theorem 1.
Note that the formulas of Theorem 1 are also valid for the Bessel polynomials ([18], p. 24)

B(α)
n (x) =

(2n)!xn

n! 2n
1F1

( −n

−2n

∣∣∣∣∣ 2x
)
=

e2/x

2n
dn

dxn

(
x2n e−2/x

)
.

This is so since the Bessel polynomials do satisfy both a recurrence equation and a derivative
rule of the desired type (see e.g. [23]), despite the fact that the corresponding function

ρ(x) =
C

σ(x)
e
∫

τ(x)
σ(x)

dx
= C xα e−2/x

does not constitute a weight function on the real axis. The validity of both a recurrence
equation and a derivative rule of the given types, however, was the only assumption in the
proof of Theorem 1.

Although the Jacobi polynomials P
(α,β)
n (x) do only constitute orthogonal polynomials for

α, β > −1, by a simple argument it can be shown that the structural properties like recurrence
equation and derivative rule remain valid for arbitrary values of α, β. A similar comment
applies to the other parameterized families of Table 1. Hence Theorem 1 is valid also in these
cases.
Theorem 1 is even valid in the case of Table 1:4a, and its recurrence equation part also for
Table 1:1 with the trivial solution pn(x) = xn. In both cases we have the recurrence equation
pn+1(x) = x pn(x), and in the first case we receive the derivative rule x2 p′n(x) = n pn+1(x).
Note that there is another derivative rule x p′n(x) = n pn(x) which cannot be discovered by
Theorem 1.

In the next section we will use the fact that these equations are given explicitly to solve an
inverse problem.
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� The Inverse Characterization Problem

Assume you have a polynomial system given by a differential equation (1). Then by the
classification of Table 1 it is easy to identify the system. On the other hand, given an arbitrary
holonomic three-term recurrence equation

qn(x)Pn+2(x) + rn(x)Pn+1(x) + sn(x)Pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[n, x]) , (34)

it is less obvious to find out whether there is a polynomial system

Pn(x) = kn x
n + . . . (n ∈ N0 , kn �= 0)

satisfying (34), being a linear transform of one of the classical systems (Hermite, Laguerre,
Jacobi, Bessel), and to identify the system in the affirmative case. In this section we present an
algorithm for this purpose. Note that Koornwinder and Swarttouw have also considered this
question and propose a solution based on the careful ad hoc analysis of the input polynomials
qn, rn, and sn. Their Maple implementation works for a part of the so-called Askey-Wilson
scheme ([2], see also [12]).
Let us start with a recurrence equation of type (34). We assume that neither qn−1(x) nor
sn(x) has a nonnegative integer zero since otherwise this recurrence equation cannot be used
to determine Pn(x) iteratively from P0(x) (with P−1(x) ≡ 0) for all n ≥ 1 or is worthless in
the backward direction. Define

N :=

{
0, if neither qn−1(x) nor sn(x) have a nonnegative integer zero

max{n ∈ N0 | n is a zero of either qn−1(x) or sn(x)} + 1, otherwise
.

Then we consider pn(x) := Pn+N (x) instead of Pn(x), see § 4 for an example with N > 0. In
this situation we rewrite (34) by substituting n by n + N and replacing Pn(x) by pn−N (x).
For simplicity we rename qn(x), rn(x) and sn(x), and assume in the sequel that the recurrence
equation

qn(x) pn+2(x) + rn(x) pn+1(x) + sn(x) pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[n, x]) (35)

is valid, but now neither qn−1(x) nor sn(x) have nonnegative integer zeros. We search for
solutions

pn(x) = kn x
n + . . . (n ∈ N0 , kn �= 0) (36)

which reads in terms of the original family Pn (n = N,N + 1, . . .)

Pn+N (x) = kn x
n + . . . (n ∈ N0) .

Next, we divide (35) by qn(x), and replace n by n− 1. This brings (35) into the form

pn+1(x) = tn(x) pn(x) + un(x) pn−1(x) (tn(x), un(x) ∈ Q(n, x)) . (37)

For pn(x) being a linear transform of a classical orthogonal system, there is a recurrence
equation (4)

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x) (An, Bn, Cn ∈ Q(n), An �= 0) , (38)
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therefore (37) and (38) must agree. We would like to conclude that tn(x) = An x + Bn, and
un(x) = −Cn which follows if we can show that pn(x)/pn−1(x) �∈ Q(n, x). To prove this
assertion, we assume that

pn(x)

pn−1(x)
∈ Q(n, x) .

Hence there are P (n, x) ∈ Q[n][x] and Q(n, x) ∈ Q[n][x] with gcdx(P (n, x), Q(n, x)) = 1 such
that the relation

Q(n, x) pn(x) = P (n, x) pn−1(x) (39)

holds. It is a classical result for orthogonal polynomials that gcdx(pn(x), pn−1(x)) = 1 since
their zeros separate each other (see e.g. [21], IV.6). Hence from (39) we conclude that

P (n, x) = Sn pn(x) and Q(n, x) = Sn pn−1(x) .

Since by assumption P (n, x) ∈ Q[n][x] should be a polynomial of fixed degree with respect to
x, and since pn(x) has degree n, this gives an obvious contradiction.
Therefore we can conclude that tn(x) = An x+Bn, and un(x) = −Cn. Hence if (37) does not
have this form, i.e., if either tn(x) is not linear in x or un(x) is not a constant with respect to
x, we see that pn(x) cannot be a linear transform of a classical orthogonal polynomial system.
In the positive case, we can assume the form (38).
Since we propose solutions (36), equating the coefficients of xn+1 in (38) we get

kn+1

kn
= An =

vn
wn

(vn, wn ∈ Q[n]) . (40)

Hence the given An = vn/wn ∈ Q(n) generates the term ratio kn+1/kn, and in particular
kn turns out to be a hypergeometric term which is uniquely determined by (40) up to a
normalization constant k0 = p0(x). Since the zeros of wn correspond to the zeros of qn−1(x),
kn is defined by (40) for all n ∈ N from k0.
In the next step we can eliminate the dependency of kn by generating a recurrence equation
for the corresponding monic polynomials p̃n(x) = pn(x)/kn. For p̃n(x) we get by (40)

p̃n+1(x) =

(
x+

Bn

An

)
p̃n(x) − Cn

AnAn−1
p̃n−1(x) =

(
x+ B̃n

)
p̃n(x) − C̃n p̃n−1(x)

with

B̃n =
Bn

An
∈ Q(n) and C̃n =

Cn

AnAn−1
∈ Q(n) .

Then our formulas (20)–(21) read in terms of B̃n and C̃n

B̃n =
2bn (a(n− 1) + d) + e(d − 2a)

(2a(n− 1) + d) (2an+ d)
(41)

and

C̃n =
−n (a(n− 2) + d)

(a (2n−1)+d)(a (2n−3)+d)

(
c +

b(n−1) + e

(2a (n−1)+d)2

(
(ae−bd)−ab (n−1)

))
, (42)

and these are independent of kn by construction.
Now we would like to deduce a, b, c, d and e from (41)–(42). Note that as soon as we have
found these five values, we can apply a linear transform (according to the zeros of σ(x)) to

13



bring the differential equation in one of the forms of Table 1 which finally gives us the desired
information.
We can assume that B̃n and C̃n are in lowest terms. If the degree of either the numerator or
the denominator of B̃n is larger than 2, then by (41) pn(x) is not a classical system. Similarly,
if the degree of either the numerator or the denominator of C̃n is larger than 4, by (42) the
same conclusion follows.
Otherwise we can multiply (41) and (42) by their common denominators, and bring them
therefore in polynomial form. Both resulting equations must be polynomial identitites in
the variable n, hence all of their coefficients must vanish. This gives a nonlinear system of
equations for the unknowns a, b, c, d and e. Any solution of this system with not both a and d
being zero yields a differential equation (17), and hence given such a solution one can decide
whether the corresponding solutions pn(x) are generated by a density (11). Therefore our
question can be resolved in this case.
If the nonlinear system does not have such a solution, we deduce that no such values a, b, c, d
and e exist, hence no such differential equation is satisfied by pn(x), implying that the system
is not a linear transformation of a classical orthogonal polynomial system.
Hence the whole question boils down to decide whether the given nonlinear system has non-
trivial solutions, and to find these solutions in the affirmative case. As a matter of fact, with
Gröbner bases methods, this question can be decided algorithmically [15]–[17]. Such an algo-
rithm is implemented, e.g., in the computer algebra system REDUCE [16], and Maple’s solve
command can also solve such a system.
Note that the solution of the nonlinear system is not necessarily unique. For example, the
Chebyshev polynomials of the first and second kind Tn(x) and Un(x) satisfy the same recur-
rence equation, but a different differential equation. We will consider this example in more
detail later.
If we apply this algorithm to the recurrence equation pn+2(x)−x pn+1(x) of the power pn(x) =
xn, it generates the complete solution set, given by Table 1:1 and 1:4a.
The following statement summarizes the above considerations.

Algorithm 1 This algorithm decides whether a given holonomic three-term recurrence equa-
tion has classical orthogonal polynomial solutions, and returns their data if applicable. The
algorithm is applicable to all entries of Table 1 independently of the orthogonality of the
system under consideration.

1. Input: a holonomic three-term recurrence equation

qn(x) pn+2(x) + rn(x) pn+1(x) + sn(x) pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[n, x]) .

2. Shift: Shift by max{n ∈ N0 |n is zero of either qn−1(x) or sn(x)} + 1 if necessary.

3. Rewriting: Rewrite the recurrence equation in the form

pn+1(x) = tn(x)pn(x) + un(x) pn−1(x) (tn(x), un(x) ∈ Q(n, x)) .

If either tn(x) is not a polynomial of degree one in x or un(x) is not constant with respect
to x, then return "no classical orthogonal polynomial solution exists"; exit.

4. Standardization: Given now An, Bn and Cn by

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x) (An, Bn, Cn ∈ Q(n), An �= 0) ,
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define
kn+1

kn
:= An =

vn
wn

(vn, wn ∈ Q[n])

according to (40).

5. Make monic: Set

B̃n :=
Bn

An
∈ Q(n) and C̃n :=

Cn

An An−1
∈ Q(n)

and bring them in lowest terms. If the degree of either the numerator or the denominator
of B̃n is larger than 2, or if the degree of either the numerator or the denominator ofC̃n

is larger than 4, return "no classical orthogonal polynomial solution exists";
exit.

6. Polynomial Identities: Set

B̃n =
2bn (a(n− 1) + d) + e(d − 2a)

(2a(n− 1) + d) (2an+ d)

and

C̃n =
−n (a(n− 2) + d)

(a (2n−1)+d)(a (2n−3)+d)

(
c +

b(n−1) + e

(2a (n−1)+d)2

(
(ae−bd)−ab (n−1)

))
,

using the unknowns a, b, c, d and e. Multiply these identities by their common denomi-
nators, and bring them therefore in polynomial form.

7. Equating Coefficients: Equate the coefficients of the powers of n in the two resulting
equations. This results in a nonlinear system in the unknowns a, b, c, d and e. Solve
this system by Gröbner bases methods. If the system has no solution, then return
"no classical orthogonal polynomial solution exists"; exit.

8. Output: Return the classical orthogonal polynomial solutions of the differential equa-
tions (17) given by the solution vectors (a, b, c, d, e) of the last step, according to the
classification of Table 1, together with the information about the standardization given
by (40). This information includes the density

ρ(x)

C
=

1

σ(x)
e
∫

τ(x)
σ(x)

dx

given by (11), and the interval by the zeros of σ(x). �

We would like to give the following comments on the above algorithm:

1. The use of Gröbner bases is not always necessary. The following observation yields an
ad hoc method to solve the nonlinear system. Observe that the coefficients of the powers
of n of the polynomial identity concerning B̃n of step 5 of the algorithm can be written
using the variables

{a2, a d, a e, a b, d2, d e, d b} (43)

Then all the derived equations are linear in the seven variables (43).
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Furthermore the coefficients of the powers of n of the polynomial identity concerningC̃n

of step 5 of the algorithm essentially are products of exactly four terms out of a, b, c, d, e.
Any of these can be written as a product of two of the variables

{d1=a2, d2=a d, d3=a e, d4=a b, d5=d2, d6=d e, d7=d b, d8=a c, d9=d c} . (44)

This is the set of variables (43) plus the two variables d8, d9. All these equations are of
second order in the nine variables (44).

Obviously the resulting system can be solved by first finding the solution space corre-
sponding to the linear subsystem, which then can be substituted in the second order
subsystem. The resulting second order system can be solved by ad hoc elimination (and
possibly rational factorization).

If one has found the variables given by (44), then it is easy to calculate a, b, c, d and e,
or one realizes that no such solution exists.

2. Note moreover that, although Gr̈obner bases techniques apply only rational arithmetic,
hence give rational solutions only, the technique described shows that solutions are also
detected if they involve radicals.

3. If the input recurrence equation has further parameters, in step 6 of the algorithm one
should solve for all variables including these additional ones, see Example 2.

Example 1 As a first example, we consider the recurrence equation

(n+ 2)Pn+2(x) − x (n+ 1)Pn+1(x) + nPn(x) = 0 .

Since s0(x) ≡ 0, we see that the shift pn(x) := Pn+1(x) is necessary. For pn(x), we have the
recurrence equation

(n+ 3) pn+2(x) − x (n+ 2) pn+1(x) + (n+ 1) pn(x) = 0 . (45)

In the first steps this recurrence equation is brought into the form

pn+1(x) =
n+ 1

n+ 2
x pn(x) − n

n+ 2
pn−1(x) ,

hence

An =
kn+1

kn
=

n+ 1

n+ 2
=

vn
wn

,

and therefore

kn =
1

n+ 1
k0 .

Moreover, for monic p̃n(x) = pn(x)/kn we get

p̃n+1(x) = x p̃n(x) + p̃n−1(x) ,

hence B̃n = 0 and C̃n = 1. In step 5 of the algorithm, the polynomial identity concerning B̃n

then reads as
−2 a b n2 + (2 a b− 2 d b)n− d e + 2 a e = 0 ,
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leading to the linear system

a b = 0, 2 a b− 2 d b = 0, d e − 2 a e = 0

for the variables a b, d b, d e, a e, with the solution

{d e = 2 a e, a b = 0, d b = 0 } , (46)

ae being arbitrary. After substituting the corresponding equations

{d6 = 2 d3, d4 = 0, d7 = 0} (47)

into the polynomial identity concerning C̃n, we equate the coefficients and receive the second
order equations

4 d1 (4 d1 + d8) = 0 , (48)

23 d1 d5 − 28 d1 d2 + 12 d1
2 − 8 d2 d5 + d5

2 = 0 , (49)

92 d1
2 − 96 d1 d2 + 24 d1 d5 + 5 d2 d9 − 20 d1 d9 + 20 d1 d8 + d3

2 = 0 , (50)

92 d1 d2 − 56 d1
2 − 48 d1 d5 + 8 d2 d5 − 6 d2 d9 + d5 d9 + 12 d1 d9 − 8 d1 d8 = 0 , (51)

− 8 d1 (8 d1 − 4 d2 − d9 + 2 d8) = 0 (52)

in terms of the variables (44). The first of these equations leads to two possibilities: either
d1 = 0 or d8 = −4 d1. One realizes quickly that the first of these possibilities implies a = d = 0
which is not allowed. Hence we must have

d8 = −4 d1, or c = −4 a , (53)

and d1 �= 0, i.e. a �= 0. At this point we have already determined σ(x) since by (46) one has
a b = 0, hence b = 0 and therefore

σ(x) = ax2 + bx+ c = a(x2 − 4) .

Hence possible orthogonal polynomial solutions of (45) are defined in the interval [−2, 2].
We substitute now (53) in (49)–(52). Then the last equation reads as

−8 d1 (−4 d2 − d9) = 0 .

Since d1 �= 0, we conclude that

d9 = −4 d2 or c = −4 a . (54)

In terms of a, b, c, d and e this yields nothing new, but it shows the compatibility of (52) with
(48).
Substituting (54) in (48)–(52) gives two trivial identities, and three complicated ones. In these
three equations, we finally resubstitute the original variables by (44), and after a rational
factorization we get

( 3 a− d ) ( a − d ) ( 2 a − d )2 = 0 ,

−4 a ( 3 a − d ) ( a − d ) ( 2 a − d ) = 0 ,

a2
(
12 a2 − 16 a d + 4 d2 + e2

)
= 0 .
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Hence either
d = a, or d = 2a, or d = 3a .

In the first of these cases, one gets e = 0 and the differential equation

(x2 − 4) y′′(x) + x y′(x) − n(n− 2) y(x) = 0 (55)

corresponding to the density

ρ(x) = − 1

σ(x)
e
∫

τ(x)
σ(x)

dx
=

1√
4 − x2

.

The corresponding orthogonal polynomials are multiples of translated Chebyshev polynomials
of the first kind

pn(x) = knCn(x) =
p0

n+ 1
Cn(x) =

2 p0
n+ 1

Tn(x/2) (n ≥ 0) (56)

(see e.g. [1], Table 22.2, and (22.5.11); Cn(x) are monic, but C0 = 2, see also Table 22.7),
hence finally

Pn(x) = pn−1(x) =
2P1

n
Tn−1(x/2) (n ≥ 1) .

In the second of the above cases, i.e. for d = 2a, one gets the equation

a2 (e − 2a) (e + 2a) = 0

with two possible solutions e = ±2a that give the differential equations

(x2 − 4) y′′(x) + 2 (x+ 1) y′(x) − n(n− 3) y(x) = 0 , (57)

and
(x2 − 4) y′′(x) + 2 (x − 1) y′(x)− n(n− 3) y(x) = 0 . (58)

They correspond to the densities

ρ(x) =

√
4 + x

4 − x
and ρ(x) =

√
4− x

4 + x
,

respectively, hence the orthogonal polynomials are multiples of the Jacobi polynomials

P
(1/2,−1/2)
n (x/2) and P

(−1/2,1/2)
n (x/2).

Finally, in the third of the above cases, i.e. for d = 3a, we get again e = 0 and

(x2 − 4) y′′(x) + 3x y′(x) − n(n− 4) y(x) = 0 (59)

corresponding to the density

ρ(x) = − 1

σ(x)
e
∫

τ(x)
σ(x)

dx
=
√
4 − x2 .

The corresponding orthogonal polynomials are multiples of translated Chebyshev polynomials
of the second kind

pn(x) = kn Sn(x) =
p0

n+ 1
Sn(x) =

p0
n+ 1

Un(x/2) (n ≥ 0) (60)
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(see e.g. [1], Table 22.2, and (22.5.13); Sn(x) are monic, see also Table 22.8), hence

Pn(x) = pn−1(x) =
P1

n
Un−1(x/2) (n ≥ 1) .

We see that the recurrence equation (45) has four different classical orthogonal polynomial
solutions!

Example 2 As a second example, we consider the recurrence equation

pn+2(x) − (x− n− 1) pn+1(x) + α (n+ 1)2 pn(x) = 0 (61)

depending on the parameter α ∈ R. Here obviously the question arises whether or not there are
any instances of this parameter for which there are classical orthogonal polynomial solutions.
In step 6 of Algorithm 1 we therefore solve also for this unknown parameter. This gives a
slightly more complicated nonlinear system, with the unique solution{

b = 2 c, c = c, d = −4 c, e = 0, a = 0, α =
1

4

}
.

Hence the only possible value for α with classical orthogonal polynomial solutions is α = 1/4,
in which case one gets the differential equation(

x+
1

2

)
p′′n(x) − 2x p′n(x) − 2n pn(x) = 0

with density
ρ(x) = 2 e−2x

in the interval [−1/2,∞], corresponding to shifted Laguerre polynomials.

� Application� The Legendre Addition Theorem

As an application of Algorithm 1 in this section we show how the particular case

Pn(x
2 + (1 − x2) cos θ) = Pn(x)

2 + 2
n∑

k=1

(n− k)!

(n+ k)!
P k
n (x)

2 cos kθ . (62)

of the Legendre addition theorem ([14], 5.4.4, p. 239, see also [22], [11])

Pn(xy +
√
1 − x2

√
1 − y2 cos θ

)
= Pn(x)Pn(y) + 2

n∑
k=1

(n− k)!

(n+ k)!
P k
n (x)P

k
n (y) cos kθ

can be deduced by linear algebra techniques. Note that (62) played an essential role in

Weinstein’s proof of the Bieberbach conjecture [22]. Here Pn(x) = P
(0,0)
n (x) are the Legendre

polynomials, and P k
n (x) are called the associated Legendre functions. Our goal will be to

identify these functions. In our deduction, we partially follow [6], see also the first author’s
review [9]. For the given purpose, we write

Pn(x
2 + (1 − x2) cos θ) = B0

n(x) + 2
n∑

k=1

(n− k)!

(n+ k)!
(1 − x2)k Bk

n(x) cos kθ (63)
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with still unknown functions Bk
n(x). Multiplying by zn, and summing for n = 0, 1, . . . yields

the generating function of the Legendre polynomials, hence ([1], (22.9.12))

1√
1 − z(2x2 + (1 − x2)(w+1/w)) + z2

=
∞∑
n=0

n∑
k=−n

(n− k)!

(n+ k)!
(1 − x2)k Bk

n(x)w
kzn (64)

where we put w = eiθ and B−k
n (x) = Bk

n(x). In the sequel we consider this equation as a
formal Laurent series expansion w.r.t. the variables w and z. The functions Bk

n(x) can be
iteratively calculated by series approximations of the left hand function (e.g., using Maple),
and it turns out that, for 0 ≤ k ≤ n ≤ 10, for example, these form polynomials that are
squares of another system of polynomials

Dk
n(x)

2 = Bk
n(x) . (65)

We normalize Dk
n(x) such that the highest coefficient has sign (−1)k (to be consistent with

the definitions given in ([1], § 8)).
Now, we would like to find a three term recurrence equation w.r.t. n valid for the polynomials
Dk

n(x).
For this purpose, we “guess” that

(ak + bn+ c)Dk
n+2(x) + (dk + en+ f)Dk

n+1(x) + (gk + hn+ i)Dk
n(x) = 0

with unknowns a, b, c, d, e, f, g, h, i. Substituting the given values Dk
n(x) (0 ≤ k ≤ n ≤ 10)

into this proposed recurrence equation yields a linear system which turns out to be consistent
(although we have

(9
2

)
= 36 equations, but only 9 unknowns), with the unique solution

(n− k + 2)Dk
n+2(x) − (2n+ 3)xDk

n+1(x) + (n+ k + 1)Dk
n(x) = 0 . (66)

Currently this recurrence equation is not yet proved, but this will be done soon. Assume for
the moment that Ek

n(x) are solutions of (66). Then by another application of linear algebra
(see e.g. [20], [12]), this recurrence equation can be “squared”, i.e. it is possible to calculate
the recurrence equation of third order valid for Ek

n(x)
2. This step can be accomplished, e.g.,

by the procedure rec*rec of the gfun packacke ([20], see also [10]) with Maple, and results
in the recurrence equation

( 2n+ 5 ) ( k + n+ 2 ) ( k + n+ 1 )2 Sk
n(x)

− ( 2n+ 3 ) ( k + n+ 2 ) ( k2 − n2 + 4x2 n2 − 4n+ 16x2 n+ 15x2 − 4 )Sk
n+1(x)

− ( 2n+ 5 ) (−2 + k − n ) ( k2 − n2 + 4x2 n2 − 4n+ 16x2 n+ 15x2 − 4 )Sk
n+2(x)

+ ( 2n+ 3 ) (−2 + k − n ) (−3 + k − n )2 Sk
n+3(x) = 0 (67)

for the squares Sk
n(x) = Ek

n(x)
2.

If we are able to prove that this recurrence equation is valid for our unknown functions Bkn(x),
then, by an a posteriori argument, we have deduced (65), since we have luckily found the
“square root” recurrence equation (66) of (67).
Next we show how it can be discovered independently that Bk

n(x) satisfy (67). We can rewrite
(64) as

F k
n (x) =

(n− k)!

(n+ k)!
(1 − x2)k Bk

n(x) = CTz,w Gk
n(z,w)
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with

Gk
n(z,w) :=

1√
1 − z(2x2 + (1 − x2)(w + 1/w)) + z2

1

znwk

where CTz,w Gk
n(z,w) denotes the constant term of the double Laurent series Gkn(z,w). To

obtain a recurrence equation for Fk
n (x), we try to find polynomials p0, p1, p2, p3 in the variables

n, k, and x, and polynomials G1, and G2, both of degree 2 in both z and w, such that

p0 G
k
n + p1G

k
n+1 + p2 G

k
n+2 + p3 G

k
n+3 − z

∂

∂z

(
G1G

k
n

z3 w

)
−w

∂

∂w

(
(1 + z)G2G

k
n

z3 w

)
= 0 .

Substituting G1 and G2 generically, and dividing by Gk
n, a polynomial identity is derived, and

by equating coefficients w.r.t. z and w, we get a linear system, again. Solving this system
results in the identity

−(n+ 3 ) ( k + n+ 2 ) ( 2 + n− k )Gk
n(z,w)

+ (n+ 2 ) ( 4n2 x2 − n2 + 22nx2 − 6n− 9 + 30x2 + k2 )Gk
n+1(z,w)

− ( 4n2 x2 − n2 + 18nx2 − 4n+ 20x2 + k2 − 4 ) (n+ 3 )Gk
n+2(z,w)

+ (n+ 2 ) (n+ 3 + k ) (n+ 3− k )Gk
n+3(z,w) =

z
∂

∂z

(
G1(z,w)G

k
n(z,w)

z3 w

)
+ w

∂

∂w

(
(1 + z)G2(z,w)G

k
n(z,w)

z3 w

)
(68)

for certain polynomials G1(z,w) and G2(z,w) which are reproduced in the appendix.
Since any formal Laurent series f(z) satisfies

z
∂

∂z
f(z) = 0 ,

applying CTz,w to the identity (68) yields the three term recurrence equation

−(n+ 3 ) ( k + n+ 2 ) ( 2 + n− k )Fk
n (x)

+ (n+ 2 ) ( 4n2 x2 − n2 + 22nx2 − 6n− 9 + 30x2 + k2 )F k
n+1(x)

− ( 4n2 x2 − n2 + 18nx2 − 4n+ 20x2 + k2 − 4 ) (n + 3 )Fk
n+2(x)

+ (n+ 2 ) (n+ 3 + k ) (n+ 3 − k )Fk
n+3(x) = 0

for F k
n (x). Using the recurrence equation

(1 + k + n) an + (−1 + k − n) an+1 = 0

which is valid for the factor (n+ k)!/(n− k)!, one can finally show (e.g., with rec*rec again)
that Bk

n(x) satisfy the recurrence equation (67), as announced.
Now we know that Bk

n(x) are the squares of the polynomial system Dk
n(x) defined by (66).

But who are these polynomials? A direct application of Algorithm 1 is not possible since our
polynomials Dk

n(x) live for n ≥ k rather than for n ≥ 0. Hence, we deal with

T k
n (x) := Dk

n+k(x)

for which, by (66), we get the recurrence equation

(n+ 2)Tk
n+2(x)− (2n+ 2k + 3)xTk

n+1(x) + (n+ 2k + 1)Tk
n (x) = 0 .
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Now an application of Algorithm 1 shows that the differential equation

(x2 − 1)Tk
n
′′
(x) + 2 (1 + k)xTk

n
′
(x) − n (n− 2k − 3)Tk

n (x) = 0

is valid, and that kn+1

kn
= 2n+2k+1

n+1 . Hence one has the density

ρ(x) = (1 − x2)k ,

i.e., we have multiples of Jacobi-Gegenbauer polynomials

T k
n (x) = κ(k)

2n (k + 1/2)n
n!

Q(k,k)
n (x)

with some function κ(k) not depending on n, and

Q(α,β)
n (x) =

1(
2n+ α+ β

n

) n∑
k=0

( n+ α
k

) ( n+ β
n− k

)
(x+ 1)k (x− 1)n−k

denoting the monic Jacobi polynomials (see e.g. [1], (22.3.1)).
To determine κ(k), we compare the coefficients of cosn θ in (63). Since ([1], (22.3))

Pn(x) =
(2n)!

2n n!2
xn +O(xn−1) and Tn(x) = 2n−1 xn +O(xn−1) ,

we get

Pn(x
2 + (1 − x2) cos θ) =

(2n)!

2n n!2

(
x2 + (1 − x2) cos θ

)n
+O(cosn−1(θ))

=
(2n)!

2n n!2
(1 − x2)n cosn θ +O(cosn−1(θ))

= 2
1

(2n)!
(1 − x2)nDn

n(x)
2 cosnθ

=
2

(2n)!
(1 − x2)n Dn

n(x)
2 2n−1 cosn θ +O(cosn−1(θ)) ,

because cosnθ = Tn(cos θ). Hence, we arrive at

Dn
n(x)

2 =
(2n)!2

22n n!2
(1 − x2)n ,

and, setting n = k, we see that we must choose κ(k) = (−1)k (2k)!
2k k!

, according to the nor-

malization with highest coefficient sign (−1)k of Dk
n(x). We have finally determined the

representation

Dk
n(x) = Tk

n−k(x) = (−1)k
(2k)!

2k k!

2n−k (k + 1/2)n−k

(n− k)!
Q

(k,k)
n−k (x) ,

and therefore

P k
n (x) = (−1)k (1 − x2)k/2

2n−2k (2k)!

k!

(k + 1/2)n−k

(n− k)!
Q

(k,k)
n−k (x) .

This finishes the proposed identification of Pk
n (x).
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� Classical Orthogonal Polynomials of a Discrete Variable

In this section, we give similar results for classical orthogonal polynomials of a discrete variable,
see Chapter 2 of [19]. These are given by a difference equation

σ(x)Δ∇y(x) + τ(x)Δy(x) + λn y(x) = 0 , (69)

where
Δy(x) = y(x+ 1) − y(x) and ∇y(x) = y(x)− y(x− 1)

denote the forward and backward difference operators, respectively. The classical discrete
orthogonal polynomials are the polynomial solutions of the difference equation (69).
These polynomials can be classified similarly as in the continuous case according to the func-
tions σ(x) and τ(x); up to linear transformations the classical discrete orthogonal polynomials
are classified acccording to Table 2 (see [19], Chapter 2, and § 6). We added the other pos-
sible solutions to those given in ([19], Chapter 2). In particular, case (2a) corresponds to the
non-orthogonal solution xn in Table 1. Similarly as for the powers

d

dx
xn = nxn−1 ,

the falling factorials xn := x(x− 1) · · · (x− n+ 1) satisfy

Δxn = nxn−1 .

It turns out that they are connected with the Charlier polynomials by the limiting process

lim
μ→0

(−1)n μn c(μ)n (x) = lim
μ→0

(x− n+ 1)n 1F1

( −n

x− n+ 1

∣∣∣∣∣μ
)
= (−1)n (x− n+ 1)n = xn

where we used the hypergeometric representation given in ([19], (2.7.9)).
Note, however, that other than in the differential equation case the above type of difference
equation is not invariant under general linear transformations, but only under integer shifts.
We will have to take this under consideration.

The classical discrete orthogonal polynomial systems correspond to a discrete weight function
ρ(x), with ([19], Equation (2.4.1))

ρ(x+ 1)

ρ(x)
=

σ(x) + τ(x)

σ(x+ 1)
, (70)

given by the Pearson type difference equation ([19], Equation (2.1.17))

Δ
(
σ(x) ρ(x)

)
= τ(x) ρ(x) . (71)

As in the continuous case, by Lemma 1 (the measure μ is discrete now) they satisfy a recurrence
equation (4)

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x) .

Multiplying (69) by ρ(x), by (71) the difference equation takes the selfadjoint form
([19], Equation (2.1.18))

Δ
(
σ(x) ρ(x)∇y(x)

)
+ λn y(x) = 0 ,
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1. σ(x) = 1, τ(x) = αx+ β =⇒ pn(x) = K
(α,β)
n (x), see § 6,

2a. σ(x) = x, σ(x) + τ(x) = 0 =⇒ pn(x) = xn := x(x− 1) · · · (x− n+ 1),

2b. σ(x) = x, σ(x) + τ(x) = μ (μ �= 0) =⇒ pn(x) = c
(μ)
n (x), the Charlier polynomials,

3 σ(x) = x, σ(x)+τ(x) = μ (γ+x) =⇒ pn(x) = m
(γ,μ)
n (x), the Meixner polynomials,

4 σ(x) = x, σ(x)+τ(x) = p
1−p (N−x) ⇒ pn(x) = k

(p)
n (x,N), the Krawchouk polynomials,

5 σ(x) = x(N +α−x), σ(x)+τ(x) = (x+β+1)(N −1−x) ⇒ pn(x) = h
(α,β)
n (x,N), the

Hahn polynomials (of first kind),

6 σ(x) = x(x+μ), σ(x)+ τ(x) = (ν+N −1−x)(N−1−x) ⇒ pn(x) = h̃
(μ,ν)
n (x,N), the

Hahn polynomials (of second kind).

Table 2: Normal Forms of Discrete Polynomials

from which one can deduce (as in Lemma 2) that pn(x) satisfy a difference rule (see also [19],
(2.2.10))

σ(x)∇pn(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x) . (72)

Analogous to the continuous case, one has a Rodrigues formula ([19], (2.2.8))

pn(x) =
En

ρ(x)
Δn

(
ρ(x)

n−1∏
k=0

σ(x− k)

)
(73)

for some En independent of x, and the orthogonality relations read as ([19], (2.3.1))

∫
R

pn(x) pm(x) dμ(x) =
∑
x∈X

pn(x) pm(x) ρ(x) =

⎧⎨
⎩

0 if m �= n

hn �= 0 if m = n

for some discrete set X ⊂ R.
To deduce formulas similar to those in Theorem 1, we substitute (25)

pn(x) = kn x
n + k′n x

n−1 + k′′n x
n−2 + . . .

in the difference equations for pn(x) and for pn+1(x), in the recurrence equation and in the
difference rule. Equating the three highest coefficients in any of these four equations yields
twelve nonlinear equations in the twelve unknowns

An, Bn, Cn, αn, βn, γn, λn, λn+1, k
′
n, k

′
n+1, k

′′
n, k

′′
n+1 .

In particular the highest coefficient of the difference equation yields

λn = −(an(n− 1) + dn)

again. We can assume that λn �= 0 for n ∈ N, hence a(n− 1)+d �= 0 for n ∈ N since otherwise
no orthogonal polynomial solutions can exist; in particular, d �= 0.
By a Gröbner basis calculation (invoked by the solve command of Maple or REDUCE) it
turns out that there is a unique solution of the above nonlinear system, given by
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Theorem 2 Let pn(x) = kn x
n + . . . (n ∈ N0 ) be a family of polynomial solutions of the

system of difference equations (69) that are orthogonal with respect to a discrete weight
function ρ(x). Then the difference rule (72)

σ(x)∇pn(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x)

is valid with

αn = an
kn

kn+1

βn = −n (a(n− 1) + d) (2(n− 1) a (a(n − 1) + a+ d) + ad + 2ae − bd)

(2 an+ d) (2 a(n− 1) + d)
,

γn =
kn
kn−1

· n (a(n− 1) + d) (a(n− 2) + d)

(a(2n− 3) + d) (a(2n− 1) + d) (2 a(n− 1) + d)2

·
(
(n−1)(a(n−1)+d)(a2(n−1)2+a(n−1)d+4ac+2ae−bd−b2)+ae2−bde+cd2

)
,

and the recurrence equation (4)

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x)

is valid with

An =
kn+1

kn
, (74)

Bn =
kn+1

kn
· (n− 1)(d + 2b)(a(n − 1) + a+ d)− 2ae + d2 + de + 2bd

(2 an+ d) (2 a(n− 1) + d)
(75)

and

Cn = −kn+1

kn

γn
a(n− 1) + d

. � (76)

Note that with an immense effort one can deduce Theorem 2 also by hand calculations, using
a similar technique as in our proof of Theorem 1.
Theorem 2 is also valid for case (1) of Table 2, see § 6; the recurrence equation part is also valid
in case (2a) of Table 2, and generates the recurrence equation pn+2(x)−(x−n−1) pn+1(x) = 0
for the falling factorial pn(x) = xn.

As a byproduct of Theorem 2, we get for the ratio k′n+1/k
′
n

Corollary 6 Let pn(x) = kn x
n+k′n xn−1+ . . . (n ∈ N0 ) be a family of orthogonal polynomial

solutions of the system of difference equations (69). Then the relation

k′n+1

k′n
=

n+ 1

n

( d n+ 2 b n+ 2 e ) ( 2 a (n − 1) + d )

( d + 2 an ) ( 2 b (n − 1) + d n+ 2 e − d )

kn+1

kn

is valid. �

As in the continuous case, the Rodrigues constant En, given by (73), can be determined.
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Corollary 7 Let pn(x) = kn x
n+ . . . (n ∈ N0) be a family of orthogonal polynomial solutions

of the system of difference equations (69) corresponding to a discrete weight function ρ(x).
Then pn(x) have a Rodrigues representation (73), En being a hypergeometric term, satifying
the relation

En+1

En
=

(a(n− 1) + d)

(a(2n− 1) + d) d
· kn+1

kn
. (77)

Proof: In ([19], (2.2.10)) it was shown that

σ(x)∇pn(x) =
λn

n τ ′n(0)

(
τn(x) pn(x)− En

En+1
pn+1

)
(78)

where τn(x) = τ(x+ n) + σ(x+n)− σ(x) ([19], (2.1.15)). An application of a method similar
to that used in Theorem 2 yields the coefficients for this type of difference rule, and hence
determines En+1/En according to (77). �

Also analogously we get

Corollary 8 Let pn(x) = kn x
n+ . . . (n ∈ N0) be a family of orthogonal polynomial solutions

of the system of difference equations (69) corresponding to a discrete weight function ρ(x).
Then the relation

hn+1

hn
= ( d + an− a )(−a3 n4 − 4 d c n a+ d b e + d b2 n− d2 c− a e2 − 4 c n2 a2

− 2na d e− 2n3 a2 d+ n2 a d b+ b n d2 − n2 a d2 + n2 b2 a− 2 a2 e n2)(n+ 1 )/(
( d + 2 an+ a ) ( d + 2 an− a ) ( d + 2 an )2

)
·
(
kn+1

kn

)2

is valid.

Proof: In ([19], (2.5.6)) it was proved that

Cn

An
=

kn−1

kn
· hn
hn−1

,

hence
hn+1

hn
=

Cn+1

An+1
· kn+1

kn
.

An application of Theorem 2 yields the result. �

Similarly as in the continuous case, Theorem 2 can be used to generate an algorithm to
test whether or not a given holonomic recurrence equation has classical discrete orthogonal
polynomial solutions.

Algorithm 2 This algorithm decides whether a given holonomic three-term recurrence equa-
tion has classical discrete orthogonal polynomial solutions, and returns their data if applicable.

1. Input: a holonomic three-term recurrence equation

qn(x) pn+2(x) + rn(x) pn+1(x) + sn(x) pn(x) = 0 (qn(x), rn(x), sn(x) ∈ Q[n, x]) .

2. Shift: Shift by max{n ∈ N0 |n is zero of either qn−1(x) or sn(x)} + 1 if necessary.
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3. Rewriting: Rewrite the recurrence equation in the form

pn+1(x) = tn(x)pn(x) + un(x) pn−1(x) (tn(x), un(x) ∈ Q(n, x)) .

If either tn(x) is not a polynomial of degree one in x or un(x) is not constant with respect
to x, return "no classical discrete orthogonal polynomial solution exists";
exit.

4. Linear Transformation: Rewrite the recurrence equation by the linear transformation
x 	→ x−g

f with (yet) unknowns f and g.

5. Standardization: Given now An, Bn and Cn by

pn+1(x) = (An x+Bn) pn(x) − Cn pn−1(x) (An, Bn, Cn ∈ Q(n), An �= 0) ,

define
kn+1

kn
:= An =

vn
wn

(vn, wn ∈ Q[n])

according to (74).

6. Make monic: Set

B̃n :=
Bn

An
∈ Q(n) and C̃n :=

Cn

An An−1
∈ Q(n)

and bring them in lowest terms. If the degree of either the numerator or the
denominator of B̃n is larger than 2, if the degree of the numerator ofC̃n is larger than 6,
or if the degree of the denominator of C̃n is larger than 4, then return
"no classical discrete orthogonal polynomial solution exists"; exit.

7. Polynomial Identities: Set

B̃n =
kn

kn+1
Bn

according to (75), and

C̃n =
kn−1

kn+1
Cn

according to (76), in terms of the unknowns a, b, c, d, e, f and g. Multiply these identities
by their common denominators, and bring them therefore in polynomial form.

8. Equating Coefficients: Equate the coefficients of the powers of n in the two resulting
equations. This results in a nonlinear system in the unknowns a, b, c, d, e, f and g. Solve
this system by Gröbner bases methods. If the system has no solution, then return
"no classical discrete orthogonal polynomial solution exists"; exit.

9. Output: Return the classical orthogonal polynomial solutions of the difference equa-
tions (69) given by the solution vectors (a, b, c, d, e, f, g) of the last step, according to the
classification given in Table 2, together with the information about the standardization
given by (74). This information includes the necessary linear transformation fx+ g, as
well as the discrete weight function ρ(x) given by (70)

ρ(x+ 1)

ρ(x)
=

σ(x) + τ(x)

σ(x+ 1)
.
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Proof: The proof is an obvious modification of Algorithm 1. The only difference is that
we have to take a possible linear transformation fx + g into consideration since the differ-
ence equation (69) is not invariant under those transformations. This leads to step 3 of the
algorithm. �

Note that an application of Algorithm 2 to the recurrence equation pn+2(x) − (x − n − 1)
pn+1(x) = 0 which is valid for the falling factorial pn(x) = xn, generates the difference equation
xΔ∇pn(x) − xΔpn(x) + npn(x) = 0 of Table 2:2a.

Example 3 We consider again the recurrence equation (61)

pn+2(x) − (x− n− 1) pn+1(x) + α (n+ 1)2 pn(x) = 0

depending on the parameter α ∈ R. This time, we are interested in classical discrete orthogonal
polynomial solutions.
According to step 3 of Algorithm 2, we rewrite (61) using the linear transformation x 	→x−g

f
with yet unknowns f and g. Step 4 yields the standardization

kn+1

kn
= − 1

f
.

In step 7, we solve the resulting nonlinear system for the variables {a, b, c, d, e, f, g, α}, resulting
in{

a = 0, b = b, c = −b (−e+d+b )

d
, d = d, e = e, f = −d+2 b

d
, g = −e

d
, α =

b ( d+b )

( d+2 b )2

}
. (79)

This is a rational representation of the solution. Since we assume α to be arbitrary, we solve
the last equation for b. This yields

b = −d

2

(
1 ± 1√

1− 4α

)
,

which cannot be represented without radicals. Substituting this into (79) yields the solution

{
a = 0, b = −d

2

(
1± 1√

1−4α

)
, c =

4α e−e−2αd

2(1−4α)
± e

2

1√
1−4α

, f = ∓ 1√
1−4α

, g = −e

d

}
,

d and e being arbitrary. It turns out that for 1 − 4α > 0 this corresponds to Meixner or
Krawchouk polynomials.

Example 4 Here we want to discuss the possibility that a given recurrence equation might
have several classical discrete orthogonal solutions. Whereas the recurrence equation of the

Hahn polynomials h
(α,β)
n (x,N) has (besides several linear transformations) only this single

classical discrete orthogonal solution, the case β = −α results in two essentially different
solutions.
Here one has the recurrence equation

(n+ 2 + α) (2 + n) (2n+ 2) (n−N + 1) pn+2(x) + (3 + 2n)

(−6nα− 2n2 α− 4n2 x− 12nx+ 2n2N + 6nN + 4N − 4α− 8x) pn+1(x)

− (1 + n) (n+ 1− α) (2n + 4) (n+N + 2) pn(x) = 0 .
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An application of Algorithm 2 shows that this recurrence equation corresponds to the two
different difference equations

x (−x+ 1− α+N)Δ∇pn(x) + (−2x+N + αN)Δpn(x) ) + n (n− 3) pn(x) = 0

and

(x+ α) (−x+ 1 +N)Δ∇pn(x) − ( 2x−N + 2α+ αN)Δpn(x) + n (n− 3) pn(x) = 0 .

� A New Polynomial System

In this section, we would like to present a new polynomial system satisfying the difference
equation (69), but not coming from a discrete weight function, see Table 2:1. We set σ(x) = 1,
and τ(x) = αx+ β (α �= 0). This yields the polynomials

K(α,β)
n (x) =

(
x+

1 + β

α

)
n
·αn · 1F1

( −n

1− x− n− 1+β
α

∣∣∣∣∣− 1

α

)
= (−1)n · 2F0

(
−n, x+ 1+β

α

−

∣∣∣∣∣α
)

where we have used kn = αn. Note that the two different hypergeometric representations
come from ([19], (2.7.7)–(2.7.8)); they convert into one another by changing the direction of

summation. The functions K
(α,β)
n (x) are not covered in ([19], Chapter 2) since

ρ(x+ 1)

ρ(x)
= 1 + αx+ β , i.e. ρ(x) = αx

(
1 + β

α

)
x

does not correspond to a valid weight function ρ(x) over a suitable discrete real set.
The deductions in [19] show that (77) is valid, and we find that the Rodrigues constant is
En = 1, hence (73)

K(α,β)
n (x) =

1

ρ(x)
Δnρ(x) =

α−x

((1 + β)/α)x
Δn

(
αx

(
1 + β

α

)
x

)
.

Applying Zeilberger’s algorithm ([24], see also [7]) to one of the hypergeometric representations
yields the recurrence equation

K
(α,β)
n+2 (x) − (nα+ xα+ α+ β)K

(α,β)
n+1 (x) − (1 + n)αK(α,β)

n (x) = 0 (80)

with the initial functions

K
(α,β)
−1 (x) ≡ 0 , K

(α,β)
0 (x) = 1 .

The next three polynomials are

K
(α,β)
1 (x) = αx+ β , K

(α,β)
2 (x) = x2α2 + α (2β + α) x+ β2 + α+ αβ ,

K
(α,β)
3 (x) = α3x3+3α2(α+β)x2+α

(
6αβ+2α2+3β2+3α

)
x+β3+2α2β+3αβ2+3αβ+2α2.

According to (78), the difference rules

∇K(α,β)
n (x) = −(αx+ αn+ β)K(α,β)

n (x) +K
(α,β)
n+1 (x) = αnK

(α,β)
n−1 (x) (81)
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are valid which are consistent with Theorem 2. Another application of Zeilberger’s algorithm
yields furthermore the recurrence equation

(1 + β + xα+ α)K(α,β)
n (x+ 2) − (β + xα+ nα+ 2 + α)K(α,β)

n (x+ 1) +K(α,β)
n (x) = 0

with respect to x which also can be obtained combining (80) and (81).
Note that the given polynomial system completes the classification of the polynomial solutions
of (69) given in ([19], Chapter 2), resulting in Table 2. Since the given system satisfies a
difference rule which is compatible with Theorem 2, Algorithm 2 can also recognize these
solutions.

	 Coe
cient Recurrence Equation

By equating the coefficients of the powers of x in their differential equation (17) one gets for
the continuous classical orthogonal polynomials

pn(x) =
n∑

k=0

a
(n)
k xk (82)

the three term recurrence equation (k = 0, . . . , n− 1)

(n− k) (a (n+ k − 1) + d) a
(n)
k = (k + 1)

(
(k b+ e) a

(n)
k+1 + (k + 2) c a

(n)
k+2

)
, (a

(n)
n+1 ≡ 0)

which was given in ([13], Eq. (3)).
In this section, we discuss the same question in the discrete case. Since the operators Δ and ∇
behave nicely with falling factorials only, the solution is a little more difficult in this setting.

Throughout this section we assume an expansion (82), i.e., we use the renamings kn = a
(n)
n ,

k′n = a
(n)
n−1, etc.

Let now pn(x) be a classical discrete system satisfying the difference equation (69)

σ(x)Δ∇pn(x) + τ(x)Δpn(x) + λn pn(x) = 0

with σ(x) = ax2+ bx+ c, τ(x) = dx+ e and λn = −(an(n−1)+dn). Note that the difference
equation is equivalent to(

σ(x) + τ(x)
)
Δpn(x) = σ(x)∇pn(x)− λn pn(x) , (83)

hence the use of the double difference operator Δ∇ can be omitted.
Taylor’s theorem yields the expansions

Δpn(x) =
n∑

k=1

p
(k)
n (x)

k!
and ∇pn(x) =

n∑
k=1

(−1)k+1p
(k)
n (x)

k!
,

and by Leibniz’s formula we receive the representations

Δpn(x) =
n−1∑
k=0

n−k∑
j=1

( k + j
j

)
a
(n)
k+j x

k and ∇pn(x) =
n−1∑
k=0

n−k∑
j=1

( k + j
j

)
(−1)j+1 a

(n)
k+j x

k

for Δpn(x) and ∇pn(x).
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Substituting these representations in (83) and equating the coefficients of the powers of x
results finally in the recurrence equations

(2a(n− 1) + d) a
(n)
n−1 = n

(
e +

(
b+

d

2

)
(n− 1)

)
a(n)n , (84)

and for 0 ≤ k ≤ n− 2

(n− k) (a (n+ k − 1) + d) a
(n)
k =

k + 1

2

(
(2b+ d) k + 2e

)
a
(n)
k+1 + (85)

n−k∑
j=2

(
a (1+(−1)j)

( k + j
j + 2

)
+
(
b (1−(−1)j)+d

)( k + j
j + 1

)
+
(
c (1+(−1)j)+e

)( k + j
j

))
a
(n)
k+j .

Note that from (84) and (85) one can deduce the discrete equivalents of (29) and (33).
As an example, we apply these formulas to the falling factorials pn(x) = xn which are solutions
of the difference equation (Table 2:2a)

xΔ∇pn(x)− xΔpn(x) + npn(x) = 0 .

Here we have a = c = e = 0, b = −d = 1. Hence for the coefficients s(n, k) of

xn =
n∑

k=0

s(n, k)xk

that are called the Stirling numbers of the first kind, we get the relation

(n− k) s(n, k) =
n−k∑
j=1

(−1)j
(
k + j
j + 1

)
s(n, k + j)

which is due to Lagrange (see e.g. [5], p. 215, Theorem C).

Appendix

Using higher coefficients k′′n, k′′′n , . . . of the polynomials

y(x) = pn(x) = kn x
n + k′n x

n−1 + k′′n x
n−2 + k′′′n xn−3 + k′′′′n xn−4 + . . . (n ∈ N0 , kn �= 0)

that are solutions of (1)

σ(x) y′′(x) + τ(x) y′(x) + λn y(x) = 0 ,

or (69)
σ(x)Δ∇y(x) + τ(x)Δy(x) + λn y(x) = 0 ,

respectively, it is possible to use these as auxiliary variables, hence determining formulas for
them. Note that to obtain the results of this article, it was crucial to make use of k′′n which
was never done before.
In this appendix, we collect results for the coefficients k′′n, k′′′n and k′′′′n in both the continuous
and discrete cases.
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In the continuous case, we have the following properties:

k′′n+1

k′′n
=

(n2 b2 + 2 b e n+ 2 c n a− b2 n− b e + c d + e2 )

(n2 b2 − 3 b2 n+ 2 b e n+ 2 c n a+ c d + 2 b2 − 2 c a − 3 b e + e2 )
·

(n+ 1 ) ( 2 an − 2 a+ d ) ( d − 3 a+ 2 an )

( d − a+ 2 an ) ( d + 2 an ) (n− 1 )

kn+1

kn
,

k′′′n+1

k′′′n
= (n+ 1 )(n3 b3 − 3n2 b3 + 6n2 b c a+ 3n2 b2 e − 6n b c a+ 3n b c d + 6n e c a

− 6n b2 e + 3n b e2 + 2n b3 + 3 e c d − 2 b c d − 3 b e2 − 2 c e a + 2 b2 e + e3)

( d − 3 a+ 2 an ) ( 2 an − 4 a+ d )
/(

( d + 2 an ) ( d − a+ 2 an ) (n− 2 )(n3 b3

+ 6n2 b c a+ 3n2 b2 e − 6n2 b3 + 6n e c a + 11n b3 − 18n b c a − 12n b2 e

+ 3n b e2 + 3n b c d− 6 b3 − 5 b c d − 6 b e2 + 11 b2 e + 3 e c d − 8 c e a

+ 12 b c a + e3)
) kn+1

kn

and

k′′′′n+1

k′′′′n

= (n+ 1 )(6n2 b2 c d + 11n2 b4 + 12 c2 n d a+ n4 b4 − 6n3 b4 − 36n2 b2 c a

+ 12n c e2 a+ 22n b3 e− 18n b2 e2 + 4n b e3 − 18n2 b3 e + 6n2 e2 b2 + 4n3 b3 e

− 44n b c e a + 12n e b c d − 8 c e2 a− 14 e b c d + 24n b2 c a+ 6 e2 c d − 6 b e3

+ 6 b2 c d + 11 b2 e2 − 6 b3 e+ 12 b c e a + 3 c2 d2 − 6 c2 d a− 12 c2 na2 + e4

− 6n b4 + 12 c2 n2 a2 + 24n2 b c e a− 14n b2 c d + 12n3 b2 c a)( d − 5 a+ 2 an )

( 2 an− 4 a+ d )
/(

( d + 2 an ) ( d − a+ 2 an ) (n− 3 )(6n2 b2 c d + 35n2 b4

+ 12 c2 n d a+ n4 b4 − 10n3 b4 − 72n2 b2 c a+ 12n c e2 a+ 70n b3 e− 30n b2 e2

+ 4n b e3 − 30n2 b3 e + 6n2 e2 b2 + 4n3 b3 e − 92n b c e a + 12n e b c d

− 20 c e2 a− 26 e b c d + 132n b2 c a+ 6 e2 c d − 10 b e3 + 26 b2 c d + 35 b2 e2

− 50 b3 e + 80 b c e a + 3 c2 d2 − 18 c2 d a− 36 c2 na2 + e4 − 50n b4 + 12 c2 n2 a2

+ 24n2 b c e a− 26n b2 c d + 12n3 b2 c a+ 24 c2 a2 − 72 b2 c a+ 24 b4)
) kn+1

kn
.

Even more complicated results are valid in the discrete case:

k′′n+1

k′′n
= (n+ 1 )(2 a2 n3 + 12 d b n2 − 6 a2 n2 + 3 d2 n2 + 5 a d n2 + 12n2 b2 + 24 e b n

+ 12 a e n− d2 n− 7 a d n+ 24 c an+ 12 d e n + 4 a2 n− 12 d b n− 12 b2 n

− 12 b e + 2 a d − 2 d2 + 12 c d + 12 e2)( 2 an− 2 a+ d ) ( d − 3 a+ 2 an )
/(

( d + 2 an ) ( d − a+ 2 an ) (n − 1 )(12 d e n + 5 a d n2 + 12 a e n − 36 d b n

+ 12 d b n2 + 24 e b n + 2 d2 + 12 e2 + 24 b d + 22 a2 n− 12 a2 n2 − 12 a e

+ 3 d2 n2 − 7 d2 n− 12 d e + 2 a2 n3 + 12 c d + 24 c an− 36 b2 n− 36 b e + 14 a d

+ 24 b2 − 12 a2 − 24 c a + 12n2 b2 − 17 a d n)
) kn+1

kn
,
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and

k′′′n+1

k′′′n
= (n+ 1 )(20 e a2 n+ 4 b n4 a2 − 16 b n3 a2 − 8 d n3 a2 − 2 e n d2 + 4 e n3 a2

+ 2 d n4 a2 − 8 b a2 n+ 4 b n d2 − 8 e n2 a2 + 12 e d a − 13 d2 n2 a− 4 d n a2

+ 5 d2 n3 a+ 10 d n2 a2 + 6 d2 an+ 20 b a2 n2 − 36n2 b2 d − 8 e a2 + 12 b d an

− 8 a e2 + 16n b3 + 8n3 b3 + n3 d3 − 24n2 b3 − 26 e an d + 22 e n2 a d

+ 10 b n3 a d − 14 b n2 d2 − 26 b n2 d a+ 24n d b2 − 24n b a e − 36n b d e

+ 24n2 e a b+ 8 b d e + 6n2 d2 e + 12n d e2 + 12nd2 c+ 6n3 d2 b+ 24na e2

+ 24n e2 b+ 24n2 e b2 + 8 e3 − 8 c d2 − 24 b e2 + 16 b2 e + 24n2 d e b

+ 24n2 d c a+ 12n3 d b2 + 24 e c d − 48n e b2 − 16 b c d − 24n d c a + 48n e c a

+ 24n b c d − 48n b c a + 48n2 b c a− 16 c e a − d3 n2 − 4 e d2 − 2 d3 n)

( d − 3 a+ 2 an ) ( 2 an − 4 a+ d )
/(

( d − a+ 2 an ) ( d + 2 an ) (n− 2 )(

48 e a2 n+ 4 b n4 a2 − 32 b n3 a2 − 16 d n3 a2 − 14 e n d2 + 4 e n3 a2 + 2 d n4 a2

− 112 b a2 n+ 50 b n d2 − 20 e n2 a2 + 60 e d a − 28 d2 n2 a− 56 d n a2 + 5 d2 n3 a

+ 46 d n2 a2 + 47 d2 an+ 92 b a2 n2 − 24 d2 a+ 24 d a2 − 72n2 b2 d − 48 b a d

− 40 e a2 + 94 b d an − 48 b3 − 32 a e2 + 88n b3 + 8n3 b3 + n3 d3 − 48n2 b3

+ 48 b a2 − 24 b d2 + 48 b e a + 96 c b a − 12 e2 d+ 48 c d a − 72 d b2 − 70 e an d

+ 22 e n2 a d+ 10 b n3 a d− 32 b n2 d2 − 56 b n2 d a+ 132n d b2 − 72n b a e

− 84n b d e + 24n2 e a b+ 68 b d e + 6n2 d2 e+ 12n d e2 + 12nd2 c + 6n3 d2 b

+ 24na e2 + 24n e2 b+ 24n2 e b2 + 8 e3 − 20 c d2 − 48 b e2 + 88 b2 e

+ 24n2 d e b+ 24n2 d c a+ 12n3 d b2 + 24 e c d − 96n e b2 − 40 b c d

− 72n d c a + 48n e c a + 24n b c d − 144n b c a + 48n2 b c a− 64 c e a

− 4 d3 n2 + 4 e d2 + 3 d3 n)
) kn+1

kn
.

We omit the very lengthy result for
k′′′′
n+1

k′′′′
n

in the discrete case. Similar expressions can be
obtained for higher coefficients.
These results should indicate that the use of computer algebra is quite natural in the given
context, and hand calculations seem not to be adequate for these computations.
Finally, for the sake of completeness, we present the full polynomial certificates G1(z,w) and
G2(z,w) from § 4:

G2(z,w) =
1

2
(−18w + 15 z + 30 z x2w − 15 z x2w2 − 10 z2 w + 15 z w2 − 15 z x2 + 4 z w2 n3

− 15 z w2 k + 31 z w2 n− 16 z n k x2 + 16 z n k − 4 z n3 x2 + 4 z n2 k − 15 z k x2

− 31 z n x2 − 20 z n2 x2 + 15 z k + 31 z n+ 4 z n3 + 20 z n2 − 2 z w − 16 z w2 nk

+ 16 z w2 nk x2 + 4 z w2 n2 k x2 − 4 z w2 n3 x2 − 4 z w2 n2 k + 20 z w2 n2

+ 15 z w2 k x2 − 31 z w2 nx2 − 20 z w2 n2 x2 + 62 z w nx2 − 18 z2 wn2 − 24 z2 wn

− 22w n2 − 4wn3 − 36w n+ 40 z w n2 x2 + 8 z w n3 x2 − 2 z w n+ 4 k2 z2wn

− 6 k2 w − 4 z2 wn3 + 10 k2 z2 w − 4 k2 z w − 4 k2 wn− 4 z n2 k x2)
/
k
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and

G1(z,w) = − 1

2
(5 z2 + 3 z + 3 z x2 w2 − 3 z w2 − 3 z x2 − 32 k z w n+ 6 k z2 w − 4 z2 k2 nx2

− 8 k z w n2 − 30 k z w + 24 k z w n2 x2 + 78 k z w x2 − 6 z w2 k2 + 9 z w2 k

− 5 z w2 n− 10 z2 k2 x2 − 8 k w n2 − 28 k w n+ 10 z2 k2 + 15 z2 k + 7 z2 n− 5 z2 x2

+ 2 z2 n2 + 16 z2 nk − 16 z2 nk x2 − 4 z2 n2 k x2 + 4 z2 n2 k + 4 z2 k2 n− 15 z2 k x2

− 7 z2 nx2 − 2 z2 n2 x2 − 4 z k2 nx2 − 12 z n k x2 + 12 z n k + 4 z n2 k + 4 z k2 n

− 9 z k x2 − 5 z n x2 − 2 z n2 x2 − 6 z k2 x2 + 6 z k2 + 9 z k + 5 z n+ 2 z n2

+ 10 z2 w2 k2 x2 + 4 z2 w2 k2 nx2 + 16 z2 w2 nk − 16 z2 w2 nk x2 − 4 z2 w2 n2 k x2

− 10 z2 w2 k2 + 5 z2 w2 x2 − 2 z2 w2 n2 + 15 z2 w2 k − 7 z2 w2 n+ 4 z2 w2 n2 k

− 4 z2 w2 k2 n− 15 z2 w2 k x2 + 7 z2 w2 nx2 + 2 z2 w2 n2 x2 + 6 z w2 k2 x2

+ 4 z w2 k2 nx2 − 5 z2 w2 + 12 z w2 nk − 12 z w2 nk x2 − 4 z w2 n2 k x2 + 4 z w2 n2 k

− 4 z w2 k2 n− 2 z w2 n2 − 9 z w2 k x2 + 5 z w2 nx2 + 2 z w2 n2 x2 − 32 k z2 wnx2

− 8 k z2 wn2 x2 − 30 k z2w x2 − 24 k w + 4 k z2 wn+ 88 k z w nx2 − 4 z n2 k x2)
/
k
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[12] Koornwinder, T.H., and Swarttouw, René: rec2ortho: an algorithm for identifying or-
thogonal polynomials given by their three-term recurrence relation as special functions.
Private communication.

[13] Lesky, P.: Die Charakterisierung der klassischen orthogonalen Polynome durch Sturm-
Liouvillesche Differentialgleichungen. Arch. Rat. Mech. Anal. 10, 1962, 341–351.

[14] Magnus, W., Oberhettinger, F. and Soni, R.P.: Formulas and Theorems for the Special
Functions of Mathematical Physics. Springer, Berlin–Heidelberg–New York, 1966.

[15] Melenk, H.: Solving polynomial equation systems by Groebner type methods. CWI Quar-
terly 3 (2), 1990, 121–136.

[16] Melenk, H.: Algebraic solution of nonlinear equation systems in REDUCE. Konrad-Zuse-
Zentrum für Informationstechnik, Technical Report TR-93-02, 1993.
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[23] Yáñez, R.J., Dehesa, J.S. and Nikiforov, A.F.: The three-term recurrence relation and
the differential formulas for hypergeometric-type functions. J. Math. Anal. Appl. 188,
1994, 855–866.

[24] Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Dis-
crete Math. 80, 1990, 207–211.

35


