Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Impact Study of Numerical Discretization Accuracy on Parameter Reconstructions and Model Parameter Distributions

  • In optical nano metrology numerical models are used widely for parameter reconstructions. Using the Bayesian target vector optimization method we fit a finite element numerical model to a Grazing Incidence x-ray fluorescence data set in order to obtain the geometrical parameters of a nano structured line grating. Gaussian process, stochastic machine learning surrogate models, were trained during the reconstruction and afterwards sampled with a Markov chain Monte Carlo sampler to determine the distribution of the reconstructed model parameters. The numerical discretization parameters of the used finite element model impact the numerical discretization error of the forward model. We investigated the impact of the polynomial order of the finite element ansatz functions on the reconstructed parameters as well as on the model parameter distributions. We showed that such a convergence study allows to determine numerical parameters which allows for efficient and accurate reconstruction results.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Matthias Plock, Martin Hammerschmidt, Sven BurgerORCiD, Philipp-Immanuel Schneider, Christof Schütte
Document Type:Article
Parent Title (English):Metrologia
First Page:054001
Year of first publication:2023
ArXiv Id:http://arxiv.org/abs/2305.02663
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.