Refine
Year of publication
Document Type
- Article (170)
- In Proceedings (148)
- Book chapter (12)
- ZIB-Report (9)
- Research data (8)
- Poster (6)
- Other (3)
- Doctoral Thesis (1)
- In Collection (1)
- Software (1)
Is part of the Bibliography
- no (359)
Keywords
Institute
Boosting the photon-extraction efficiency of nanophotonic structures by deterministic microlenses
(2014)
Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures
(2016)
Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell's equation. Highly accurate geometrical modelling and numerical accuracy at low computational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scattering at optical wavelengths of periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range.
Optical 3D simulations in many-query and real-time contexts require new solution strategies. We study an adaptive, error controlled reduced
basis method for solving parametrized time-harmonic optical scattering problems. Application fields are, among others, design and optimization problems
of nano-optical devices as well as inverse problems for parameter reconstructions occurring e. g. in optical metrology. The reduced basis method pre-
sented here relies on a finite element modeling of the scattering problem with
parametrization of materials, geometries and sources.