Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (蓄エネルギー機器を有するシステムへの適用)

Optimization of Energy Supply Systems in Consideration of Hierarchical Relationship Between Design and Operation (Application to Systems With Energy Storage Units)

in press
  • Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method with the strategies has been extendedly applied to the optimal design of energy supply systems with storage units. Especially, the method of re- ducing model is extended by aggregating representative days and sampling times differently in consideration of the characteristics of storage units. A case study is conducted on the optimal design of a gas turbine cogeneration system with a thermal storage unit for district energy supply. Through the study, it turns out the hierarchical MILP method is effective to derive the optimal solution as compared with a conventional method. It also turns out that the model reduction with the special time aggregation is effective to shorten the computation time as compared with that without time aggregation in case that the number of candidates for equipment capacities is relatively small.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Ryohei Yokoyama, Yuji Shinano, Tetsuya Wakui
Document Type:Article
Parent Title (Japanese):第40回エネルギー・資源学会研究発表会講演論文集
First Page:398
Last Page:403
Year of first publication:2021
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.