Refine
Year of publication
Document Type
- ZIB-Report (33)
- In Proceedings (19)
- Article (12)
- Book chapter (2)
- Software (2)
- In Collection (1)
- Proceedings (1)
Keywords
To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) approaches have been applied widely to such optimal design problems. The authors have proposed a MILP method utilizing the hierarchical relationship between design and operation variables to solve the optimal design problems of energy supply systems efficiently. In addition, some strategies to enhance the computation efficiency have been adopted: bounding procedures at both the levels and ordering of the optimal operation problems at the lower level. In this paper, as an additional strategy to enhance the computation efficiency, parallel computing is adopted to solve multiple optimal operation problems in parallel at the lower level. In addition, the effectiveness of each and combinations of the strategies adopted previously and newly is investigated. This hierarchical optimization method is applied to an optimal design of a gas turbine cogeneration plant, and its validity and effectiveness are clarified through some case studies.
This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.
Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a mixed-integer linear programming solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, we present the basic concept of having two parallel extensions, and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator), including an implementation of deterministic parallelization. Second, we discuss the difficulties in achieving a good performance that utilizes all resources on an actual computing environment, and the difficulties of performance evaluation of the parallel solvers. Third, we present a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions. Finally, we demonstrate the current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer nonlinear programs (MINLPs) in parallel.
To attain the highest performance of energy supply systems, it is necessary to rationally determine design specifications in consideration of operational strategies corresponding to energy demands. Mixed-integer linear programming (MILP) approaches have been applied widely to such optimal design problems. A MILP method utilizing the hierarchical relationship between design and operation variables have been proposed to solve them efficiently. However, it cannot necessarily be effective to multi-objective optimal design problems because of the existence of a large number of competing design candidates. In this paper, the hierarchical MILP method is revised from the viewpoint of computation efficiency so that it can be applied practically to multi-objective optimal design problems. At the lower level, the order of the optimal operation problems to be solved is changed based on incumbents obtained previously to increase a lower bound for the optimal value of the combined objective function and reduce the number of the optimal operation problems to be solved. At the upper level, a lower bound for the optimal value of the combined objective function is incorporated into the solution method to reduce the number of the design candidates to be generated. This revised hierarchical MILP method is applied to a multiobjective optimal design of a gas turbine cogeneration plant, and its validity and effectiveness are clarified.
In designing energy supply systems, designers are requested to rationally determine equipment types, capacities, and numbers in consideration of equipment operational strategies corresponding to seasonal and hourly variations in energy demands. However, energy demands have some uncertainty at the design stage, and the energy demands which become certain at the operation stage may differ from those estimated at the design stage. Therefore, designers should consider that energy demands have some uncertainty, evaluate the performance robustness against the uncertainty, and design the systems to heighten the robustness. Especially, this issue is important for cogeneration plants, because their performances depend significantly on both heat and power demands. Although robust optimal design methods of energy supply systems under uncertain energy demands were developed, all of them are based on linear models for energy supply systems. However, it is still a hard challenge to develop a robust optimal design method even based on a mixed-integer linear model. At the first step for this challenge, in this paper, a method of evaluating the performance robustness of energy supply systems under uncertain energy demands is proposed based on a mixed-integer linear model. This problem is formulated as a bilevel mixed-integer linear programming one, and a sequential solution method is applied to solve it approximately by discretizing uncertain energy demands within their intervals. In addition, a hierarchical optimization method in consideration of the hierarchical relationship between design and operation variables is applied to solve large scale problems efficiently. Through a case study on a gas turbine cogeneration plant for district energy supply, the validity and effectiveness of the proposed method and features of the performance robustness of the plant are clarified.
Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite its simplicity, portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple technique in modern MIP and SAT solvers that effectively finds additional domain reductions after the domain of a variable has been reduced. In this paper we introduce distributed domain propagation, a technique that shares bound tightenings across solvers to trigger further domain propagations. We investigate its impact in modern MIP solvers that employ portfolio parallelization. Computational experiments were conducted for two implementations of this parallelization approach. While both share global variable bounds and solutions, they communicate differently. In one implementation the communication is performed only at designated points in the solving process and in the other it is performed completely asynchronously. Computational experiments show a positive performance impact of communicating global variable bounds and provide valuable insights in communication strategies for parallel solvers.
Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG.
The Ubiquity Generator (UG) is a general framework for the external parallelization of mixed integer programming (MIP) solvers. In this paper, we present ParaXpress, a distributed memory parallelization of the powerful commercial MIP solver FICO Xpress. Besides sheer performance, an important feature of Xpress is that it provides an internal parallelization for shared memory systems. When aiming for a best possible performance of ParaXpress on a supercomputer, the question arises how to balance the internal Xpress parallelization and the external parallelization by UG against each other. We provide computational experiments to address this question and we show computational results for running ParaXpress on a Top500 supercomputer, using up to 43,344 cores in parallel.
To attain the highest performance of energy supply systems, it is necessary to
rationally determine types, capacities, and numbers of equipment in consideration of
their operational strategies corresponding to seasonal and hourly variations in energy
demands. In the combinatorial optimization method based on the mixed-integer linear
programming (MILP), integer variables are used to express the selection, numbers, and
on/off status of operation of equipment, and the number of these variables increases
with those of equipment and periods for variations in energy demands, and affects the computation efficiency significantly. In this paper, a MILP method utilizing the
hierarchical relationship between design and operation variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the
optimal values of design variables are searched by the branch and bound method; At
the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given
tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified.
The purpose of this work is to improve the throughput of step-and-scan lithography equipment to shorten the production time of a wafer. For this purpose, we propose a method for solving the MSOP (Movement Sequence Optimization Problem), which is the problem of computing the fastest schedule for visiting all shots on a wafer. It is well-known that the MSOP on step-and-repeat lithography equipment can be modeled as a traveling salesman problem. In contrast to step-and-repeat lithography equipment, a schedule for step-and-scan lithography equipment must also indicate the scanning direction of each shot, in addition to the sequence of the shots. For this reason, the traveling salesman problem formulation for step-and-repeat lithography equipment cannot be applied to solve the MSOP on step-and-scan lithography equipment directly. We overcame this difficulty by introducing auxiliary vertices to model the scanning directions in the traveling salesman problem formulation. By this method, we were able to compute exact optimal sequences considering the scanning directions of shots for several MSOP instances. Our numerical experiments demonstrated that our proposed method was capable of computing exact optimal solutions for real-world MSOP instances having up to 232 shots on a wafer. These optimal solutions gave a 0.25% to 4.66% improvement in productivity over solutions computed by previously known methods.