Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Multiple projection MCMC algorithms on submanifolds

  • We propose new Markov Chain Monte Carlo algorithms to sample probability distributions on submanifolds, which generalize previous methods by allowing the use of set-valued maps in the proposal step of the MCMC algorithms. The motivation for this generalization is that the numerical solvers used to project proposed moves to the submanifold of interest may find several solutions. We show that the new algorithms indeed sample the target probability measure correctly, thanks to some carefully enforced reversibility property. We demonstrate the interest of the new MCMC algorithms on illustrative numerical examples.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Tony Lelievre, Gabriel Stoltz, Wei Zhang
Document Type:Article
Parent Title (English):IMA Journal of Numerical Analysis
Date of first Publication:2022/03/17
ArXiv Id:http://arxiv.org/abs/2003.09402
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.