Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- no (2)
Pathwise estimates for effective dynamics: the case of nonlinear vectorial reaction coordinates
(2019)
Effective dynamics using conditional expectation was proposed in [F. Legoll and T. Lelièvre, Nonlinearity, 2010] to approximate the essential dynamics of high-dimensional diffusion processes along a given reaction coordinate. The approximation error of the effective dynamics when it is used to approximate the behavior of the original dynamics has been considered in recent years. As a continuation of the previous work [F. Legoll, T. Lelièvre, and S. Olla, Stoch. Process. Appl, 2017], in this paper we obtain pathwise estimates for effective dynamics when the reaction coordinate function is either nonlinear or vector-valued.
We propose new Markov Chain Monte Carlo algorithms to sample probability distributions on submanifolds, which generalize previous methods by allowing the use of set-valued maps in the proposal step of the MCMC algorithms. The motivation for this generalization is that the numerical solvers used to project proposed moves to the submanifold of interest may find several solutions. We show that the new algorithms indeed sample the target probability measure correctly, thanks to some carefully enforced reversibility property. We demonstrate the interest of the new MCMC algorithms on illustrative numerical examples.