### Refine

#### Document Type

- Article (14)
- ZIB-Report (4)

#### Keywords

- cross-entropy method (2)
- Donsker-Varadhan principle (1)
- Ergodic diffusion (1)
- Importance sampling (1)
- change of measure (1)
- effective dynamics (1)
- equation-free (1)
- heterogeneous multiscale method (1)
- important sampling (1)
- model reduction (1)

#### Institute

In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: We first show that if we start with an ergodic diffusion processes whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Zwanzig-Mori, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the ”equation-free” approach and the ”heterogeneous multiscale method” can be seen as special cases of our approach.

Importance sampling is a widely used technique to reduce the variance of a Monte Carlo estimator by an appropriate change of measure. In this work, we study importance sampling in the framework of diffusion process and consider the change of measure which is realized by adding a control force to the original dynamics. For certain exponential type expectation, the corresponding control force of the optimal change of measure leads to a zero-variance estimator and is related to the solution of a Hamilton–Jacobi–Bellmann equation. We focus on certain diffusions with both slow and fast variables, and the main result is that we obtain an upper bound of the relative error for the importance sampling estimators with control obtained from the limiting dynamics. We demonstrate our approximation strategy with an illustrative numerical example.

Many interesting rare events in molecular systems like ligand association, protein folding or con- formational changes happen on timescales that often are not accessible by direct numerical simulation. Therefore rare event approximation approaches like interface sampling, Markov state model building or advanced reaction coordinate based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches: How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so they also allow for understanding deep connections between the different approaches.

Applications of the cross-entropy method to importance sampling and optimal control of diffusions
(2014)

We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several numerical examples and discuss algorithmic issues and possible extensions of the method.

Applications of the cross-entropy method to importance sampling and optimal control of diffusions
(2014)

We propose new Markov Chain Monte Carlo algorithms to sample probability distributions on submanifolds, which generalize previous methods by allowing the use of set-valued maps in the proposal step of the MCMC algorithms. The motivation for this generalization is that the numerical solvers used to project proposed moves to the submanifold of interest may find several solutions. We show that the new algorithms indeed sample the target probability measure correctly, thanks to some carefully enforced reversibility property. We demonstrate the interest of the new MCMC algorithms on illustrative numerical examples.

In this paper, we study Jarzynski's equality and fluctuation theorems for diffusion processes. While some of the results considered in the current work are known in the (mainly physics) literature, we review and generalize these nonequilibrium theorems using mathematical arguments, therefore enabling further investigations in the mathematical community. On the numerical side, variance reduction approaches such as importance sampling method are studied in order to compute free energy differences based on Jarzynski's equality.

This paper studies time-inhomogeneous nonequilibrium diffusion processes, including both Brownian dynamics and Langevin dynamics. We derive upper bounds of the relative entropy production of the time-inhomogeneous process with respect to the transient invariant probability measures. We also study the time reversal of the reverse process in Crooks' fluctuation theorem. We show that the time reversal of the reverse process coincides with the optimally controlled forward process that leads to zero variance importance sampling estimator based on Jarzynski's equality.

The article surveys and extends variational formulations of the thermodynamic free
energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations. The implications of the different variational formulations for designing efficient stochastic optimization and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated.

In many applications, it is often necessary to sample the mean value of certain quantity with respect to a probability measure $\mu$ on the level set of a smooth function ξ:R^d→R^k, 1≤k<d. A specially interesting case is the so-called conditional probability measure, which is useful in the study of free energy calculation and model reduction of diffusion processes. By Birkhoff's ergodic theorem, one approach to estimate the mean value is to compute the time average along an infinitely long trajectory of an ergodic diffusion process on the level set whose invariant measure is $\mu$. Motivated by the previous work of Ciccotti, Lelièvre, and Vanden-Eijnden, as well as the work of Lelièvre, Rousset, and Stoltz, in this paper we construct a family of ergodic diffusion processes on the level set of ξ whose invariant measures coincide with the given one. For the conditional measure, in particular, we show that the corresponding SDEs of the constructed ergodic processes have relatively simple forms, and, moreover, we propose a consistent numerical scheme which samples the conditional measure asymptotically. The numerical scheme doesn't require computing the second derivatives of ξ and the error estimates of its long time sampling efficiency are obtained.