Refine
Document Type
Language
- English (3)
Has Fulltext
- no (3)
Is part of the Bibliography
- no (3)
Keywords
- Machine Learning (1)
- NILM (1)
- Recurrence Plot (1)
- V-I trajectory (1)
- neural networks (1)
Institute
Stuttering is a complex speech disorder identified by repetitions, prolongations of sounds, syllables or words and blockswhile speaking. Specific stuttering behaviour differs strongly,thus needing personalized therapy. Therapy sessions requirea high level of concentration by the therapist. We introduce STAN, a system to aid speech therapists in stuttering therapysessions. Such an automated feedback system can lower the cognitive load on the therapist and thereby enable a more consistent therapy as well as allowing analysis of stuttering over the span of multiple therapy sessions.
Parameter free Non-intrusive Load Monitoring (NILM) algorithms are a major step toward real-world NILM scenarios. The identification of appliances is the key element in NILM. The task consists of identification of the appliance category and its current state. In this paper, we present a param- eter free appliance identification algorithm for NILM using a 2D representation of time series known as unthresholded Recurrence Plots (RP) for appliance category identification. One cycle of voltage and current (V-I trajectory) are transformed into a RP and classified using a Spacial Pyramid Pooling Convolutional Neural Network architecture. The performance of our approach is evaluated on the three public datasets COOLL, PLAID and WHITEDv1.1 and compared to previous publications. We show that compared to other approaches using our architecture no initial parameters have to be manually tuned for each specific dataset.
Time series are series of values ordered by time. This kind of data can be found in many real world settings. Classifying time series is a difficult task and an active area of research. This paper investigates the use of transfer learning in Deep Neural Networks and a 2D representation of time series known as Recurrence Plots. In order to utilize the research done in the area of image classification, where Deep Neural Networks have achieved very good results, we use a Residual Neural Networks architecture known as ResNet. As preprocessing of time series is a major part of every time series classification pipeline, the method proposed simplifies this step and requires only few parameters. For the first time we propose a method for multi time series classification: Training a single network to classify all datasets in the archive with one network. We are among the first to evaluate the method on the latest 2018 release of the UCR archive, a well established time series classification benchmarking dataset.