Refine
Year of publication
Document Type
- Article (6)
- conference proceeding (article) (5)
- Working Paper (1)
Is part of the Bibliography
- no (12)
Keywords
- GEOMETRY (3)
- Iron (3)
- field emission (3)
- silicon (3)
- Biomechanik (2)
- Current measurement (2)
- Etching (2)
- FABRICATION (2)
- Sensor arrays (2)
- field emitter array (2)
Institute
- Fakultät Angewandte Natur- und Kulturwissenschaften (7)
- Labor Mikrosensorik (4)
- Fakultät Maschinenbau (3)
- Labor Biomechanik - LBM (2)
- Fakultät Angewandte Sozial- und Gesundheitswissenschaften (1)
- Fakultät Elektro- und Informationstechnik (1)
- Labor Biofluidmechanik - BFM (1)
- Labor Physiotherapie - LPh (1)
- Regensburg Center of Biomedical Engineering - RCBE (1)
- Regensburg Center of Health Sciences and Technology - RCHST (1)
Begutachtungsstatus
- peer-reviewed (4)
Subacromiales Impingment
(2021)
Precisely aligned arrays of sharp tip structures on top of elongated pillars were realized by using an improved fabrication process including an additional inductively-coupled-plasma reactive-ion etching step. Arrays of n-type and p-type silicon with 271 tips have been fabricated and investigated. Those structures have a total height of 5–6 µm and apex radii less than 20nm. Integral field emission measurements of the arrays yielded low onset-fields in the range of 8–12V=µm and field enhancement factors between 300 and 700. The I-E curves of n-type structures showed the usual Fowler-Nordheim behaviour, whereas p-type structures revealed a significant saturation region due to the limited number of electrons in the conduction band and a further carrier depletion effect caused by the pillar. The maximum integral current in the saturation region was 150 nA at fields above 30V=µm. An excellent stability of the emission current of less than ± 2% fluctuation was observed in the saturation region. For n-type Si a maximum integral current of 10 µA at 24V=µm and an average current stability with a fluctuation of ± 50% were measured.
A new bone substitute, consisting of hydroxylapatite and calcium sulphate, was prepared in two formulations and analysed for its mechanical strength and antibiotic elution.The bone substitute PerOssal has osteoconductive and degradable properties. The material has a built-in capillary structure, which results in an immediate fluid uptake. Antibiotics absorbed to the bone substitute resulted in a prolonged release rate. Mechanical strength was investigated by an unconfined compression test up to failure under both wet and dry conditions for both formulations of the bone substitute. Antibiotic release was analysed microbiologically for two antibiotics, vancomycin and gentamicin, over an elution period of 10 days using the agar diffusion method.The drug release analysis resulted in a prolonged release rate of both antibiotics over 10 days. In vitro the amount of gentamicin and vancomycin eluted at day 10. From one pellet still exceeded the minimal inhibitory concentration of most aetiologically important pathogens. Formulation two of the present bone substitute is significantly harder in both wet and dry conditions when compared to formulation one. Both formulations lose strength in the wet condition relative to their performance in the dry condition. However, formulation two is as hard under wet conditions as formulation one is when dry.PerOssal is a suitable new degradable osteoconductive bone substitute that can be loaded with antibiotic solutions, which are released in effective doses over 10 days. The mechanical strength of PerOssal is sufficient to support cancellous bone defects in non-weight-bearing areas or in combination with osteosynthesis.
PURPOSE:
The purpose of this study was to find a suitable method of labelling cartilage samples for the measurement of distraction distances in biomechanical testing.
METHODS:
Samples of bovine cartilage were labelled using five different methods: hydroquinone and silver nitrate (AgNO3), potassium permanganate (KMnO4) with sodium thiosulphate (Na2S2O3), India ink, heat, and laser energy. After the labelling, we analysed the cartilage samples with regard to cytotoxity by histochemical staining with ethidiumbromide homodimer (EthD-1) and calcein AM. Furthermore, we tested cartilages labelled with India ink and heat in a T-peel test configuration to analyse possible changes in the mechanical behaviour between marked and unlabelled samples.
RESULTS:
Only the labelling methods with Indian ink or a heated needle showed acceptable results in the cytotoxity test with regard to labelling persistence, accuracy, and the influence on consistency and viability of the chondrocytes. In the biomechanical T-peel configuration, heat-labelled samples collapsed significantly earlier than unlabelled samples.
CONCLUSION:
Labelling bovine cartilage samples with Indian ink in biomechanical testing is a reliable, accurate, inexpensive, and easy-to-perform method. This labelling method influenced neither the biomechanical behaviour nor the viability of the tissue compared to untreated bovine cartilage.
Arrays of black silicon field emission pillar structures were fabricated on p-type silicon substrates. Two types of samples with the same number of pillars (arrays of 10 × 10) but different pillar heights (8 and 20 μm) were prepared as well as a black silicon reference sample without pillars. The field emission properties of these cathodes were investigated both by means of integral current-voltage measurements and by field emission scanning microscopy. Samples with a pillar height of 20 μm revealed onset fields as low as 6.4 V/μm, field enhancement factors up to 800, and emission currents up to 8 μA at an applied field of 20 V/μm. Due to the p-type material, a saturation of the emission current for fields above 11 V/μm was observed. This saturation leads to a stable operation with a current fluctuation of less than ±8%. It was found that samples with a pillar height of 20 μm showed improved emission characteristics compared to samples with a pillar height of 8 μm or without pillars. The voltage maps revealed an increased emission homogeneity after a “burn-in” sequence of the sample. The current map showed that a few of the pillars dominate the emission. Integral current stability measurements were performed under different vacuum pressures, in order to investigate altered emission behavior and a potential degradation of the emitters. At pressures above 10−6 mbar, the sample starts to degrade irreversibly. Nevertheless, even after a harsh treatment over 30 min at 5 × 10−5 mbar and at an applied field of 23 V/μm, the cathode was still operating, and did not fail during further operation over 20 h at 5 × 10−8 mbar and at an applied field of 28 V/μm.
Extraction of the characteristics of current-limiting elements from field emission measurement data
(2017)
In this contribution, the authors will present an algorithm to extract the characteristics of nonideal field emission circuit elements from saturation-limited field emission measurement data. The method for calculating the voltage drop on current-limiting circuit elements is based on circuit theory as well as Newton's method. Since the only assumption the authors make on the current-limiting circuit is a connection in series, this method is applicable to most field emission data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters as well as the parameter correlations are fully taken into account throughout the algorithm. N-type silicon samples with varying external serial resistors are analyzed. All results show a good agreement to the nominal resistor values. Additionally, several p-type samples are analyzed, showing a diodelike behavior. The extracted current-limiting characteristics of the p-type samples are in good agreement with a pn-junction model. The stability of the emission current of the p-type samples is measured by constant voltage measurements and compared to the extracted current-limiting characteristics. The application of the algorithm to measurement data shows that the given algorithm is a valuable tool to analyze field emission measurement data influenced by nonemissive processes.
Precisely aligned high-aspect-ratio (HAR) silicon tip arrays were fabricated using enhanced reactive ion etching with an inductively-coupled-plasma followed by a sharpening oxidation. A gold thin film was then sputtered only on the tips of the HAR structures. Field-emission (FE) properties from Au-coated HAR p-Si tip array cathodes have been systematically investigated by means of field emission scanning microscopy (FESM). A rather high efficiency of the HAR Si structures (71% at 550 V), but limited homogeneous FE with currents of 1-600 nA might be correlated with the varying geometry of the tips and the presence of oxides. I-V measurements of single Au-coated HAR emitters revealed activation effects and the saturation current region at 3 nA. An increase of the saturation current by 4 orders of magnitude was observed during 20 hours of conditioning at constant voltage, which finally resulted in nearly reproducible FN curves with a ß-factor of 473. An excellent stability of the emission current of less than 1 % was obtained during the additional long-time conditioning at constant voltage. Optical switching under halogen lamp illumination resulted in at least 2 times higher saturation currents and showed a linear dependence of the FE current on the light color temperature.
Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (µCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and µCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the µCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and µCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting.
Successful transfer of photoacoustic gas sensors from laboratory to real-life applications requires knowledge about potential cross-sensitivities towards environmental and gas matrix changes. Multi-dimensional calibration in case of cross-sensitivities can become very complex or even unfeasible. To address this challenge, we present a novel algorithm to compute the collision based non-radiative efficiency and phase lag of energy relaxation on a molecular level (CoNRad) for photoacoustic signal calculation. This algorithmic approach allows to calculate the entire elaxation cascade of arbitrarily complex systems, yielding a theoretical photoacoustic signal. In this work the influence of varying bulk compositions, i.e. nitrogen (N2), oxygen (O2) and water (H2O) on the photoacoustic signal during methane (CH4) detection is demonstrated. The applicability of the algorithm to other photoacoustic setups is shown exemplary by applying it to the relaxational system investigated in [1]. Hayden et al. examined the effect of water on photoacoustic carbon monoxide (CO) detection.
Precisely aligned arrays of sharp tip structures on top of elongated pillars were realized by using an improved fabrication process including an additional inductively-coupled-plasma reactive-ion etching step. Arrays of n-type and p-type silicon with 271 tips have been fabricated and investigated. Those structures have a total height of 5–6 µm and apex radii less than 20nm. Integral field emission measurements of the arrays yielded low onset-fields in the range of 8–12V=µm and field enhancement factors between 300 and 700. The I-E curves of n-type structures showed the usual Fowler-Nordheim behaviour, whereas p-type structures revealed a significant saturation region due to the limited number of electrons in the conduction band and a further carrier depletion effect caused by the pillar. The maximum integral current in the saturation region was 150 nA at fields above 30V=µm. An excellent stability of the emission current of less than ± 2% fluctuation was observed in the saturation region. For n-type Si a maximum integral current of 10 µA at 24V=µm and an average current stability with a fluctuation of ± 50% were measured.
The Exoplanet Imaging Data Challenge is a community-wide effort meant to offer a platform for a fair and common comparison of image processing methods designed for exoplanet direct detection. For this purpose, it gathers on a dedicated repository (Zenodo), data from several high-contrast ground-based instruments worldwide in which we injected synthetic planetary signals. The data challenge is hosted on the CodaLab competition platform, where participants can upload their results. The specifications of the data challenge are published on our website https://exoplanet-imaging-challenge.github.io/. The first phase, launched on the 1st of September 2019 and closed on the 1st of October 2020, consisted in detecting point sources in two types of common data-set in the field of high-contrast imaging: data taken in pupil-tracking mode at one wavelength (subchallenge 1, also referred to as ADI) and multispectral data taken in pupil-tracking mode (subchallenge 2, also referred to as ADI+mSDI). In this paper, we describe the approach, organisational lessons-learnt and current limitations of the data challenge, as well as preliminary results of the participants’ submissions for this first phase. In the future, we plan to provide permanent access to the standard library of data sets and metrics, in order to guide the validation and support the publications of innovative image processing algorithms dedicated to high-contrast imaging of planetary systems.
Semiconductor field emitters are suitable candidates for applications, which require a very stable field emission (FE) current and a high emission uniformity over the entire emission area. By using different materials and geometries, we are able to vary the FE characteristics within a wide range. Each specific application requires its own optimized design for the cathode as well as for the other parts of the FE electron source. To meet as many of these requirements as possible while using only a limited number of different prefabricated components, we established a modular system concept for our FE electron source. This allows the implementation of almost every cathode material. For first characterizations, we used gated p-type Si cathodes with 16 tips. We obtained stable FE currents of 0.4 μA for a grid-potential of 400 V and a gate potential of 100 V. Almost 100% of the electrons are emitted towards the grid-electrode. Parasitic leakage paths, as well as the electron emission towards the gate-electrode can be neglected. Approximately 10% of the electrons are transmitted through the grid and reach the external anode. This is in good agreement with the optical transmission through the grid-mesh.