• search hit 2 of 4
Back to Result List

Mechanical and Microstructural Analysis of Friction Surfaced Aluminum Coatings on Silicon Nitride Ceramic Substrates

  • The lack of suitable techniques for joining Si3N4 ceramics with metals has limited the usage of this otherwise outstanding material for composite applications. In this study, aluminum AlMgSi0.5 (EN AW-6060) was coated onto silicon nitride Si3N4 ceramic substrates using friction surfacing technology. Experimental work revealed that the harmful effects of thermal shock (e.g., substrate cracking, coating delamination) observed with other material combinations can be avoided by selecting materials with a low coefficient of thermal expansion, low Young’s modulus and high thermal conductivity. Design of experiments derived models for coating thickness and bonding strength fit the data well (i.e., the regression model accounts for most of the variation in the response variable). Whereas the coating thickness is predominately dependent on the rotational speed used, the bonding strength is also affected by the traverse speed. Coating thicknesses upto 2.03 mm and bonding strengths of 42.5 MPa were achieved. Deposition rates exceed those ofThe lack of suitable techniques for joining Si3N4 ceramics with metals has limited the usage of this otherwise outstanding material for composite applications. In this study, aluminum AlMgSi0.5 (EN AW-6060) was coated onto silicon nitride Si3N4 ceramic substrates using friction surfacing technology. Experimental work revealed that the harmful effects of thermal shock (e.g., substrate cracking, coating delamination) observed with other material combinations can be avoided by selecting materials with a low coefficient of thermal expansion, low Young’s modulus and high thermal conductivity. Design of experiments derived models for coating thickness and bonding strength fit the data well (i.e., the regression model accounts for most of the variation in the response variable). Whereas the coating thickness is predominately dependent on the rotational speed used, the bonding strength is also affected by the traverse speed. Coating thicknesses upto 2.03 mm and bonding strengths of 42.5 MPa were achieved. Deposition rates exceed those of physical vapor deposition by a magnitude of ×1000 and bonding strength is on-par with thin-film metallization. Scanning transmission electron microscope analysis revealed formation of a glassy phase at the interface. Using energy-dispersive X-ray spectroscopy analysis high silicon and oxygen content with smaller percentages of aluminum and nitrogen were detected. High-resolution transmission electron microscope imaging revealed no distinct lattice structure leading to the assumption that the composition is predominantly amorphous and consists of SiAlON.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Hasan AtilORCiD, Matthias Leonhardt, R. J. Grant, S. M. Barrans
DOI:https://doi.org/10.1007/s11661-022-06849-1
Identifier:1073-5623 OPAC HS OPAC extern
Parent Title (English):Metallurgical and Materials Transactions A
Publisher:Springer Nature
Place of publication:New York
Document Type:Article
Language:English
Date of Publication (online):2022/11/07
Year of first Publication:2022
Number of pages:20 Seiten
First Page:1
Last Page:20
Institutes:Fakultät Maschinenbau
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften
Open Access:open_access
Research focus:FSP3: Produktion
Publication Lists:Leonhardt, Matthias
Atil, Hasan
Publication reviewed:begutachtet
Release Date:2022/11/21
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.