Refine
Year of publication
Document Type
- Conference Proceeding (35)
- Article (8)
- Part of a Book (2)
- Other (1)
Keywords
- emissivity (2)
- infrared radiation (2)
- Berührungslose Temperaturmessung (1)
- Contactless measurement (1)
- Emissionsgrad (1)
- Emissivität (1)
- Gasturbine (1)
- Infrarot-Strahlung (1)
- Kontaktwiderstand (1)
- Laser-Flash-Verfahren (1)
Institute
Berührungslose Temperaturmessung an Verbrennungsgasen bei hohen Temperaturen und hohen Drücken
(2019)
Stationäre Gasturbinen sind von großer Bedeutung für die heutige Energieversorgung. Der Wirkungsgrad einer Gasturbine steigt mit zunehmender Heißgastemperatur an. Turbinenhersteller bzw. Kraftwerksbetreiber sind daher bestrebt, Turbinen bei der höchsten materialtechnisch möglichen Heißgastemperatur einzusetzen. Eine entsprechende Prozessoptimierung des Turbinenbetriebs setzt somit die exakte Kenntnis der Gastemperaturen während des Betriebs und damit eine verlässliche Messung derselben voraus. Zur Messung der Gastemperatur werden derzeit in der Regel Thermoelemente unmittelbar im Abgasstrom platziert. Aufgrund der dort vorherrschenden extremen Bedingungen degradieren diese Sensoren allerdings sehr schnell. Ein alternativer Ansatz sieht die Entwicklung eines berührungslosen Messverfahrens auf der Grundlage von Strahlungsthermometern vor. Für die Umsetzung dieses Vorhabens ist die genaue Kenntnis des Verhaltens der infrarot-optischen Emissions- und Transmissionsspektren der im Abgasstrom enthaltenen Gase bei hohen Temperaturen und Drücken eine wesentliche Voraussetzung. Aus diesem Grund wurde am ZAE Bayern eine Hochtemperatur-Hochdruck-Gaszelle entwickelt, die es in Verbindung mit einem FTIR-Spektrometer erlaubt, Gase und Gasgemische hinsichtlich dieser Gesichtspunkte zu charakterisieren. In dieser Arbeit wird die neue Messapparatur vorgestellt und Gasgemische, die für die Turbinenanwendungen relevant sind, werden analysiert. Zur Identifizierung eines geeigneten Wellenlängenbereichs für die geplante berührungslose Temperaturmessung wurden erste Messungen durchgeführt, auf deren Grundlage ein adäquater Wellenlängenbereich ermittelt werden konnte.
Energy efficiency and operation safety in energy conversion, process technology, and aerospace engineering requires advanced material investigation, in particular at high temperatures to characterize the materials and components. Additionally, modern additive manufacturing methods, in particular the 3D metal laser printer requires a detailed control of the melting temperature. Many applications are based on a layered structures, e.g. thermal barrier coatings in gas turbines. Also components manufactured by additive manufacturing pose a layered structure. In these structures the mechanical contact between the layers and to the substrate is of high interest. Besides, the complete characterisation of the additive manufactured component is important for its later application. To cope with these new demands, the University of Applied Sciences Wuerzburg - Schweinfurt (FHWS) and the Bavarian Center for Applied …
Das Ziel dieser Arbeit bestand in der Entwicklung eines langwelligen Strahlungsthermometers zur berührungslosen Messung von Oberflächentemperaturen in stationären Gasturbinen während des Betriebs der Turbinen innerhalb des EU-geförderten Projektes „Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (Acronym STARGATE)“. Im Rahmen der Arbeit wurden die infrarot-optischen Eigenschaften der Wärmedämmschichten und der vorhandenen Brenngase am ZAE Bayern bei hohen Temperaturen bis 1600 K und Drücken bis 13 bar bestimmt. Mit Hilfe dieser experimentellen Charakterisierungen konnte ein geeigneter Spektralbereich um 10 μm für das langwellige Strahlungsthermometer identifiziert werden. Entsprechend dieser Erkenntnisse wurde zunächst ein Laboraufbau mit geeigneten optischen Bauteilen (Filter, IR-Wellenleiter, etc.) realisiert und verifiziert. Anschließend wurde ein Prototyp für Messungen in Gasturbinen während des Betriebs der Turbinen entwickelt und in einem Turbinenteststand der Firma Siemens AG in Berlin erfolgreich getestet. Abschließend wurde eine Unsicherheitsanalyse durchgeführt, die eine erweiterte Messunsicherheit der gemessenen Temperaturen von etwa ± 30 K ergab.
In the context of the optimization of stationary gas turbines, the surface temperatures of the turbine blades have to be measured by a non-contact technique using radiation thermometers during operation of the turbine. Nowadays turbine blades are protected by thermal barrier coatings. The infrared-optical properties of these coatings require the usage of the MIR or LWIR region for non-contact measurement of the surface temperatures. For performing such measurements and for properly analyzing the derived data, the transmission and absorption spectra of the combustion gas mixture within the turbine were determined at the local conditions during operation of the turbine. Therefore, subject of this work is the measurement of the transmission spectra of carbon dioxide and water vapor at high temperatures and high pressures to identify a wavelength range, which is almost free of absorption and emission effects. In …
The operation temperatures of gas turbine engines have been increased significantly to optimize their efficiency factor. To protect the metallic blades from these high temperatures, thermal barrier coatings (TBCs) are applied onto the turbine blades. These layers must have a good adhesion to the supporting turbine blade. A poor adhesion may lead to a delamination of the layer during operation and finally to a destruction of the turbine blade and eventually the complete turbine. It is therefore necessary, to check the quality of the layer adhesion regularly during service or preferably during operation. Approaches for non-contact and nondestructive techniques by using optical or infrared radiation are not sophisticated up to now. Hence in this paper a new attempt to improve these optical or infrared-optical methods is described. The presented idea relies on the application of different wavelengths for the used measurement system. Using a short wavelength range, where the TBC is semitransparent, allows the measurement of the temperature of the turbine blade. Using a second, long wavelength range where the TBC is non-transparent, the temperature of the surface of the TBC can be determined. As the thermal contact is usually correlated with the mechanical adhesion such measurements can be a possible tool for nondestructively testing the adhesion of TBCs.
The objective of the EU project “Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)” is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines.
For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics …
The EU project STARGATE (Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines) has the headline objective to develop a suite of advanced sensors, instrumentation and related systems in order to contribute to the development of the next generation of green and efficient gas turbine engines. To increase the efficiency of gas turbines higher combustion temperatures and higher turbine inlet temperatures are required. This implies that turbine blades and vanes are exposed to higher temperatures. Advanced thermal barrier coatings (TBCs) based on ceramic materials protect the components from overheating and ensure mechanical integrity. Still, materials and coatings need to be stressed to their limits to reach the challenging goals of an efficiency increase. Under these circumstances, it is crucial to have sensing techniques available that are capable of accurately monitoring the temperature of turbine parts in order to prevent damages within the engine. The approach to overcome current limitations of existing techniques is to use long wavelength infrared (LWIR) pyrometry as TBCs are usually semi-transparent in the near or short wavelength infrared. Therefore one work package within the STARGATE project is dedicated to the development of a LWIR radiation thermometer to measure the surface temperature of TBCs contactless during operation of the gas turbine engines. The paper shortly gives an overview of the investigation performed within the STARGATE project. The construction, calibration and application of the LWIR radiation thermometer is described in detail and results obtained on a test facility are presented. The paper closes with an outlook on future plans of implementing the LWIR pyrometer in the quality system of gas turbine operation.
Hochtemperaturmessung und Materialuntersuchung für Energietechnik und additive Fertigungsverfahren
(2017)
Non-contact temperature measurement of combustion gases at high temperatures and high pressures
(2017)
Development of Long Wavelength Infrared Radiation Thermometry for Measurements in Gas Turbines
(2016)
Stationary gas turbines are still an important part of today's power supply. With increasing temperature of the hot combustion gas inside a gas turbine, the efficiency factor of the turbine increases. For this reason, it is intended to operate turbines at the highest possible gas temperature. Therefore, in the combustion chamber and especially at the position of the first stage guide vanes the gas temperature needs to be measured reliably. To determine the gas temperature, one promising approach is the application of a non-contact measurement method using a radiation thermometer. A radiation thermometer can measure the gas temperature remotely from outside of the harsh environment. At ZAE Bayern, a high temperature and high pressure gas cell has been developed for this purpose in order to investigate gases and gas mixtures under defined conditions at high pressures and high temperatures. This gas cell can …
Non-Contact Temperature Measurement Of Combustion Gases at High Temperatures and High Pressures
(2016)