FG Thermische Energietechnik
Refine
Document Type
- Doctoral thesis (18)
- Master thesis (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Year of publication
Keywords
- Braunkohle (5)
- Lignite (4)
- Trocknung (4)
- Wirbelschicht (4)
- Wirbelschichtverfahren (4)
- Fluidized bed (3)
- Heat transfer (3)
- Kraftwerk (3)
- Modellierung (3)
- Numerische Strömungssimulation (3)
Institute
In einem von erneuerbaren Energien dominierten Energiesystem spielen Speichertechnologien eine zentrale Rolle. Im Rahmen der deutschen Energiewende entstehen momentan mehrere Demonstrationsprojekte, in welchen regenerativer Strom mittels Wasserelektrolyse in Form von Wasserstoff gespeichert wird und sektorenübergreifend Anwendung findet.
Zur technischen und ökonomischen Bewertung von Szenarien, welche bereits heute von Relevanz sind, werden im Rahmen dieser Arbeit Simulationen durchgeführt. Hierfür werden mehrere auf regenerativen Energien und Wasserstoff basierende Systempfade mit den Zielapplikationen Wasserstoffbereitstellung für Industrieanwendungen, Wasserstoff-Gasnetzeinspeisung und Rückverstromung entworfen. Darüber hinaus wird auch ein zukünftiges Szenario zur saisonalen Stromspeicherung betrachtet.
Als Voraussetzung der Simulation werden die in den Systempfaden vorkommenden Komponenten in Matlab/Simulink von Grund auf abgebildet und je nach Zielstellung logisch miteinander verschalten. Die Elektrolyseanlage als zentrale Komponente verfügt hierbei über den höchsten Detailgrad. Zur Erhebung technischer Kennfelder als auch zur Charakterisierung des Betriebsverhaltens werden weitreichende Untersuchungen an einem realen Druckelektrolyseur durchgeführt, woraufhin eine Implementierung der erhobenen Daten in das Modell erfolgt. Die Energiebereitstellung in den Simulationen geschieht mittels Windkraft und Photovoltaik, welche direkt oder zur Wasserstoffherstellung genutzt wird. Der Wasserstoff wird je nach Einsatzstrategie weiter verdichtet, einer Speicherlösung zugeführt und anschließend rückverstromt. Zur Deckung des Wasserstoffbedarfs bzw. der Stromabnahmeprofile wird eine Sensitivitätsanalyse zur Dimensionierung der Systemkomponenten durchgeführt. Der Hauptfokus liegt hierbei auf der Sicherstellung der Versorgungssicherheit.
Aufgrund seines Detailgrades schließt das im Rahmen dieser Arbeit entwickelte Modell die Lücke zwischen der Komponenten- und der Systemmodellierung. Somit findet es in der zielgerichteten Analyse von realen Wasserstoff-Versorgungspfaden seine Anwendung.
Aufbauend auf der technischen Simulation werden die rechtlichen Rahmenbedingungen der Systempfade dargestellt und anhand eines spezifisch angepassten Kostenmodells die Wasserstoff- und Stromgestehungskosten berechnet sowie die Kostenverteilung hinsichtlich der Kostenbestandteile und Komponenten dargestellt.
Die Hauptfaktoren der Gestehungskosten liegen in der Strombereitstellung, gefolgt von der Elektrolyse. Für die Wasserstoffspeicherung und Rückverstromung fallen vergleichsweise geringe Kosten an. Der angesetzte Zinssatz und eventuelle Abgaben haben einen wesentlichen Einfluss auf die Strom- und Wasserstoffkosten. Die Höhe der anfallenden Abgaben ist stark vom Anwendungsfall abhängig und muss für jeden Einzelfall gesondert betrachtet werden. Ein maßgeblicher Entfall von Abgaben liegt bei der Eigenversorgung ohne Leitung durch ein öffentliches Netz vor.
The modern world is currently facing the energy revolution due to the decarbonisation challenges, promoted by the United Nations Framework Convention on Climate Change (UNFCCC). The well-established fossil fuel energy sources are being pushed from their leading market positions by renewable energy. European governments are some of the first to take decisive action towards decarbonisation and have already started reforming their economic sectors. New questions arising from such changes are influencing the role of Russia in supplying energy to the European market. The development of a market for renewable gas, especially renewable hydrogen in Europe, could potentially, in a long-term scenario up to 2050, be an option for Russia to help maintain demand and remain in the role as a main exporter.
The focus of this master thesis is put on the assessment of the current state of readiness of Russian and European energy systems for integration of Power-to-Gas (PtG) systems and for development of a carbon-free hydrogen market. German internal green hydrogen production capacity cannot meet the approximate demand in 2030 and 2050. However, the presence of the unutilised power capacity from Russian nuclear and hydro power plants opens a new opportunity to generate economically attractive hydrogen in large volumes via electrolysis with low electricity costs and zero carbon dioxide footprint.
In this thesis different supply chains for hydrogen export (Russia-Germany) are constructed and, as a result, the levelised costs of hydrogen (LCOH) are calculated and analysed. Hydrogen produced in Russia and transported to Germany via maritime shipment shows that it can already be competitive to the domestically produced green hydrogen in Germany. The main compartment of the LCOH is the electricity expenditure, which the current Russian industrial tariffs can reach up to 90% of the total costs. Further reductions of the electricity price for PtG systems are recommended in order to achieve lower results for the LCOH.
The outcome of this master thesis provides an overview on the current readiness of Russian and German hydrogen infrastructure and further recommendations on how it should be adapted. Finally a 2050 roadmap for the implementation of a hydrogen market in Russia and Germany is developed.
In der vorliegenden Arbeit wird die Kondensation von Wasserdampf im horizontalen Rohr bei Drücken bis 10 bar im Hinblick auf das Wärmeübertragungsverhalten und die entstehenden Druckdifferenzen untersucht. Um hierfür eine entsprechende Ausgangsbasis zu schaffen, werden im ersten Teil der Arbeit die bereits veröffentlichten experimentellen Untersuchungen zum Thema zusammengefasst und diskutiert. Anschließend werden die vorhandenen theoretischen Grundlagen der Hydrodynamik von Zweiphasenströmungen sowie zum Wärmeübertragungsverhalten dargelegt. Dabei wird jeweils auf die bestehenden Schwierigkeiten bei der physikalischen Beschreibung der Phänomene und damit einhergehenden Unsicherheiten bei der Berechnung von Zielgrößen aufmerksam gemacht. Zur Berechnung des Reibungsdruckverlustes werden die Modelle von Friedel und Lockhart/Martinelli und zur Berechnung des Wärmeübergangskoeffizienten die Modelle von Thome, Shah, Cavallini, Numrich/Müller, Dobson/Chato sowie Huhn gegenübergestellt.
Der eigentliche Schwerpunkt der Arbeit liegt daran anschließend bei der experimentellen Bestimmung der beiden Zielgrößen - spezifischer Druckverlust und Wärmeübergangskoeffizient - bei absoluten Sattdampfdrücken zwischen 4…10 bar und Eintrittsgeschwindigkeiten bis 21,5 m/s. Die Entwicklung und die Errichtung der hierzu erforderlichen Versuchsapparatur erfolgten im Rahmen dieser Arbeit. Mit acht geometrisch identischen Doppelrohrwärmeübertragern (Innendurchmesser Kondensationsrohr: 20,5 mm) lassen sich die benötigten lokalen Temperaturinformationen in Abhängigkeit des Kondensationsfortschrittes generieren, indem unter Konstanthalten der Ein- bzw. Austrittsbedingungen (Sattdampfdruck und -massenstrom, Kühlwassertemperatur und -durchsatz) die Anzahl durchströmter Wärmeübertrager variiert wird. Mit in Summe 63 Versuchspunkten bei drei Druckstufen und jeweils fünf Eintrittsgeschwindigkeiten werden 15 Wärmeübergangs- und Druckverlustverläufe als Funktion des Kondensatanteils bzw. der Rohrlängskoordinate ermittelt. Der Vergleich der experimentellen Befunde mit den vorgestellten und bekannten Theorien zeigt zum Teil starke Abweichungen und nicht wiedergegebene Abhängigkeiten. Die mittleren relativen Abweichungen zwischen experimentellen und von den bestehenden Modellvorstellungen berechneten Wärmeübergangskoeffizienten liegen zwischen 16…42 %.
Ausgehend von den experimentellen Befunden dieser Arbeit werden Berechnungsgleichungen für den lokalen Wärmeübergangskoeffizienten sowie den spezifischen Druckverlust entwickelt. Der darüber hinaus durchgeführte Abgleich mit experimentellen Befunden aus der Literatur führt dazu, dass ein breiterer Parameterbereich erfasst wird, als der in dieser Arbeit experimentell untersuchte. Die entwickelten Berechnungsmodelle ermöglichen eine deutlich bessere Vorhersage von Wärmeübergang und Druckverlust als die bestehenden Modellvorstellungen. Aufgrund der komplexen Phänomenologie des Kondensationsprozesses im horizontalen Rohr bleibt eine Extrapolation dennoch mit Risiken verbunden. Die empfohlene Vorgehensweise zur Weiterentwicklung des Wissensstandes auf diesem Gebiet wird im Ausblick der Arbeit gegeben.
In der vorliegenden Arbeit werden die Modellierung und die numerische Simulation von Strömung, Wärme- und Stofftransport zur Abbildung eines Trocknungsprozesses von Braunkohlepartikeln in einer blasenbildenden Wirbelschicht behandelt. Hierbei wird das Euler-Euler Two Fluid Model zugrunde gelegt und die Beschreibung des Fließverhaltens der Feststoffphase mittels der Kinetic Theory of Granular Flow realisiert. Ausgehend von einem Überblick zum aktuellen Stand der Forschung wird der Bedarf nach einer geeigneten Konfiguration von Modellparametern und Submodellen hinsichtlich der Strömungsmodellierung sowie nach der Implementierung eines Trocknungsmodells abgeleitet und als Zielsetzung formuliert.
Experimentelle Voruntersuchungen an einer Wirbelschichtanlage im Labormaßstab schaffen die Datenbasis für die spätere Validierung des Modells. Dabei erfolgt zunächst eine Betrachtung einzelner Zustandspunkte von diskontinuierlichen Trocknungsprozessen, um die darin auftretenden, strömungstechnischen Veränderungen zu quantifizieren. Zur Bewertung werden die makroskopischen Eigenschaften sowie Charakteristiken meso- und mikroskaliger Strömungstrukturen herangezogen, die sich aus der Analyse von Druckfluktuationen ergeben. Des Weiteren werden die Trocknungsverläufe mehrerer Chargen für verschiedene Betriebsparameter aufgezeichnet.
In einem ersten Untersuchungsschwerpunkt werden ausschließlich strömungsmechanische Aspekte fokussiert. Auf Basis umfangreicher Sensitivitätsanalysen zu den Einflüssen der rheologisch relevanten Parameter, der Impulsaustauschfunktion einschließlich der Partikelsphärizität und der Randbedingungen für Behälterwand und Gaseinlass, sowie durch Vergleiche mit den experimentellen Daten wird eine Parameterkonfiguration des Strömungsmodells vorgeschlagen. Die damit erzielten Ergebnisse sind insgesamt zufriedenstellend und geben die beobachteten Veränderungen im Trocknungsprozess korrekt wieder. Ursachen für bestehende Abweichungen zum Experiment werden diskutiert.
Im zweiten Untersuchungsschwerpunkt wird der gesamte Trocknungsprozess betrachtet. Hierzu werden Wärme- und Stofftransportmechanismen innerhalb des Modells berücksichtigt, wobei die eigens implementierte Trocknungskinetik auf Ebene der Partikel ansetzt. Die Einflüsse der Sphärizität und zwei verschiedener Formulierungen zur Berechnung der Wärme- und Stoffübergangskoeffizienten werden untersucht. Für den favorisierten Parametersatz werden die Simulationen mit einem expliziten Vorwärtsverfahren gekoppelt, wodurch die Trocknungsverläufe auf makroskopischer Zeitskale approximiert und somit mit den experimentellen Daten verglichen werden können. Es wird gezeigt, dass das vorgeschlagene Gesamtmodell die Trocknungsverläufe bei niedrigen bis mäßigen Leerrohrgeschwindigkeiten zuverlässig abbilden kann. Auftretende Diskrepanzen werden diskutiert und weiterer Entwicklungsbedarf abgeleitet.
Im Rahmen dieser Arbeit wurde ein Berechnungsmodell zur thermisch-geometrischen Dimensionierung eines kontinuierlich arbeitenden Druck-Wirbelschicht-Verdampfungs-Trockners mit Tauchheizflächen für polydisperse Braunkohle erstellt. Zunächst wurde auf Basis experimenteller Ergebnisse eine strukturell optimierte Grundgleichung zur Beschreibung des zeitlichen Feuchteverlaufes entwickelt. Dabei wurden die Besonderheiten des Trocknungsgutes (z.B. die Polydispersität und die Ausbildung einer Gleichgewichtsfeuchte) berücksichtigt. Mit Hilfe der für den Trockner aufgestellten Energiebilanzen wurde ein Modell zur Beschreibung des zeitlichen Verdampfungstrocknungsverlaufes entwickelt. Dabei wurde auch der Einfluss des Druckes in den Subgleichungen und Stoffwertberechnungen berücksichtigt. (Der Überdruck ist einer der Hauptunterschiede der DDWT zu zahlreichen anderen Trocknungsverfahren). Weiterführend wurde unter Anwendung der Gleichungen zur Beschreibung der wirbelschicht-bedingten asymmetrischen Verweilzeitverteilung ein Gesamtmodell – das Trockner-Auslegungs-Modell (TRAM) – entwickelt und die Modellarchitektur detailliert beschrieben.
PEM water electrolysis is a clean technology for hydrogen production. In spite of its many advantages, the costs of the conventional PEM electrolysis cell makes it commercially less competitive vis-à-vis its peers. An alternative cell design has been proposed which has up to a 25 % costs advantage over the conventional cell. In this alternative cell design, the flow channel plate which bears the most costs in the conventional cell design has been replaced with a 3-D Porous Transport Layer (PTL) structure. It has however, been observed that the conventional cell by far out performs the low cost cell at high current density operations, due to increased mass transport limitation in the later. Industrial and commercial hydrogen production efforts are focused towards high current density operation (> 3 A/cm²), so the alternative cell design must be optimized for mass transport limitation.
PEM water electrolysis is a clean technology for hydrogen production. In spite of its many advantages, the costs of the conventional PEM electrolysis cell makes it commercially less competitive vis-à-vis its peers. An alternative cell design has been proposed which has up to a 25 % costs advantage over the conventional cell. In this alternative cell design, the flow channel plate which bears the most costs in the conventional cell design has been replaced with a 3-D Porous Transport Layer (PTL) structure. It has however, been observed that the conventional cell by far out performs the low cost cell at high current density operations, due to increased mass transport limitation in the later. Industrial and commercial hydrogen production efforts are focused towards high current density operation (> 3 A/cm²), so the alternative cell design must be optimized for mass transport limitation.
This work seeks to understand the source of, and to eliminate the mass transport losses in the alternative cell design to get it performing at least as good as the conventional cell at current densities up to 5 A/cm². A 2-D non-isothermal semi-empirical fully-coupled models of both cell designs have been developed and experimentally validated. The developed validated models were then used as tools to simulate and predict the best operating conditions, design parameters and micro-structural properties of the PTL at which the mass transport issues in the alternate cell will be at its minimum, at high current densities. The models are based on a multi-physics approach in which thermodynamic, electrochemical, thermal and mass transport sub-models are coupled and solved numerically, to predict the cell polarization and individual overpotentials, as well as address heat and water management issues. The most unique aspect of this work however, is the development of own semi-empirical equations for predicting the mass transport overpotential imposed by the gas phase (bubbles) at high current densities. For the very first time, calculated polarization curves up to 5 A/cm² have been validated by own experimental data. The results show that, the temperature and pressure, water flowrate and thickness of the PTL are the critical parameters for mitigating mass transport limitation. It was found that, for the size of the cells studied (25 cm² active area each), when both cells are operating at the same temperature of 60 °C, alternative design will have a comparable performance to the conventional designed cell even at 5 A/cm² current density when; the operating pressure is ≥ 5 bar, the feed water flowrate is ≥ 0.024l/min∙cm², PTL porosity is 50 %, PTL pore size is ≥ 11 µm and PTL thickness is 0.5 mm. At these operating, design and micro-structural conditions, the predicted difference between the polarizations of both cells will be only ~10 mV at 5 A/cm² operating current density.
With the rapid growth of renewable energy sources (RES) in the power generation mix in accordance with the German energy transition policy (‘Energiewende’), fewer baseload coal power plants will be required. Future power generation will be supplied through decentralized power utilities such as off-shore wind parks and also through high operational flexibility of existing conventional coal power units. High operational flexibility means conventional power plants have to increase cyclic operations to cope with feed-ins from variable-RES such as wind and solar.
Unlike medium and peak load power plants that can react quickly to load changes and power ramps, baseload power plants are not suited for such operations. Important technical requirements for flexible operation include among others; frequent start-ups and shut-downs, a minimum downtime, shorter startup time and short operational periods. Baseload coal power plants however do not meet these requirements.
This increased cyclic mode of operation can have severe impacts on vital power plant components such as superheater and reheater tubes resulting in high temperature cyclic oxidation/corrosion especially because these plants were not designed for frequent cyclic operations. To optimize plant operations, minimize material damage and reduce operational and maintenance cost, it is therefore important to understand the oxidation and corrosion risk to plants materials associated with this flexible mode of operation.
In this context, thermochemical modeling in FactSage 6.4ᵀᴹ as well as experimental investigations were carried out. For the experimental investigations, five commercial coal boiler superheater and reheater materials, namely T91, VM12-SHC, TP347-HFG, DMV304 HCu and DMV310 N were exposed for 1000 hours under discontinuous isothermal oxidation conditions and 1000 hours thermo–cyclic oxidation conditions at a metal surface temperature of 650 °C. The synthetic corrosive flue gas consisted of a mixture of CO₂, O₂, SO₂, N₂ and H₂O. The test material samples were partly covered in fly ash to investigate the effect ash deposits on the corrosion and oxidation behavior of the test materials. After exposure metallographic analysis by means of light microscopy and scanning electron microscopy (LOM and SEM–EDS) were carried out to study the oxide morphology and micro–structural properties of the materials. The oxidation kinetics (weight change) results showed significant oxide growth rates (weight gain) under cyclic oxidation conditions especially in the martensitic alloys – T91, VM12-SHC.
Furthermore, metallographic analysis revealed severe oxide spallation in the ash covered sections of these alloys. The austenitic materials (TP374-HFG, DMV310 N) with the exception of DMV304 HCu showed good oxidation behavior with minimal oxide growth both under isothermal and thermal cyclic conditions. However, severe grain boundary attack and internal sulphidation were found in these alloys. DMV310 N showed the best corrosion and oxidation performance. The thermochemical modeling calculations supported the experimental results.
Im Rahmen der vorliegenden Arbeit wird der Transport von CO₂ aus energietechnischen Anlagen untersucht. Zunächst werden die physikalischen und technischen Randbedingungen erläutert, welche ein Transportsystem beeinflussen und beschränken, insbesondere werden die Einflüsse der thermo-dynamischen Fluideigenschaften von CO₂ und CO₂-Gemischen auf die Transportprozesse analysiert. Des Weiteren erörtert die Arbeit die Besonderheiten, die bei der Auslegung und dem Betrieb von CO₂-Pipelines (im Gegensatz beispielsweise zu Erdgaspipelines) auftreten.
Der Hauptteil der Arbeit befasst sich mit der Modellierung und Simulation zweier potentieller Pipeline-transportsysteme, welche CO₂ vom Kraftwerksstandort Jänschwalde in der Lausitz a) zu einem CO₂-Hub im Hafen von Rotterdam und b) zu einem Offshore-Aquifer unter der Nordsee transportieren. Anhand dieser konkreten Fallbeispiele werden die Auslegung des Transportsystems dargestellt und die statischen und die dynamischen Betriebskennlinien der Pipelines und des Injektionsbrunnens aufgenommen und hinsichtlich der Auswirkungen auf den Betrieb unter flexiblen Lastbedingungen untersucht.
Die Modellierung der Pipelines wird mithilfe der Modellierungs- und Simulationssoftware OLGA Dynamic Multiphase Flow Simulator von Schlumberger umgesetzt. Die Validierung der genutzten Submodelle der Software erfolgt über die Simulation historischer Lastfälle der Canyon-Reef-Carrier-Pipeline in Texas und der CO₂-Injektionspilotanlage Ketzin westlich von Potsdam.
Die Hauptmodelle umfassen a) die Pipeline vom Kraftwerkszaun bis zum Übergabepunkt am CO₂-Hub in Rotterdam bzw. b) die Pipeline vom Kraftwerkszaun bis zum Meeresgrund sowie den Injektionsbrunnen und ein Modell des Aquiferspeichers. Es ist mit den Modellen möglich, die thermo-fluiddynamischen Prozesse des CO₂ in der Rohrleitung sowie im Injektionsbrunnen bis zum Speicher nachzubilden. Es wurden insgesamt 66 Szenarien simuliert und ausgewertet.
Die simulierten Szenarien umfassen statische Kennlinien bei konstanter Last, definierte Lastzyklen mit Sprüngen konstanter Höhe, reale Lastgänge auf Basis historischer Kraftwerksmessdaten sowie typische Betriebsabläufe wie An- und Abfahren der Pipeline, Absperrung einzelner Abschnitte der Pipeline bis hin zu den Auswirkungen eines Risses in der Pipelinewand.
Zu den wesentlichen Ergebnissen der Simulationen zählen die auftretenden Druckverläufe, Wärme-übergangs- und Wärmespeichervorgänge sowie das dynamische Verhalten bei wechselnden Lastbedingungen.
Ausgehend von den Simulationsergebnissen werden die Pipelinesysteme charakterisiert und die dynamischen Prozesse hinsichtlich ihrer Auswirkungen auf Betriebsabläufe und Auslegungskriterien untersucht.
Es kann gezeigt werden, dass Pipelines für die gestellte Transportaufgabe geeignet sind und mit einem gewissen Maß an Prozessüberwachung und -regelung auch dauerhaft sicher betrieben werden können. Problematische Prozessverläufe werden eingehend diskutiert und Regelstrategien aufgezeigt, welche einen Betrieb der Pipelines sicherstellen können.
Im Rahmen dieser Arbeit wurden Dampferzeuger-Werkstoffe mit Chromgehalten von 0,1 bis 12 Ma.-% hinsichtlich ihres Korrosionsverhaltens unter konventionellen und Oxyfuel-Betriebsbedingungen untersucht. Dabei stand neben der Gasphasenkorrosion auch die Korrosion unter Beteiligung von Aschedepositionen im Fokus der Untersuchungen. Die Auslagerung der Werkstoffe erfolgte durch eine kombinierte Versuchsanordnung aus Technikumanlage und einem eigens errichteten Labor-Korrosionsversuchsstand, wobei eine Gesamtauslagerungsdauer von 1.110 Stunden realisiert wurde. Dabei konnte das in der Technikumanlage begonnene Schichtwachstum im Labor-Korrosionsversuchsstand erfolgreich weitergeführt werden. Mit Hilfe der kombinierten Versuchsanordnung, insbesondere des Labor-Korrosionsversuchsstandes, konnten reale Betriebsbedingungen erfolgreich simuliert werden. Nach erfolgter Auslagerung in der Feuerungsanlage zeigten die Proben beginnende Korrosionserscheinungen an den Werkstoffoberflächen. Die Untersuchungsergebnisse der einzelnen Werkstoffproben hinsichtlich des Korrosionsverhaltens ließen jedoch kaum Unterschiede zwischen höher und niedrig legierten Werkstoffen erkennen. Wie bei anderen Autoren konnte nur am Werkstoff mit 9-12 Ma.-% Chromgehalt (Werkstoff VM12SHC) Aufkohlung festgestellt werden. Dabei hat die Aufkohlungstiefe gegenüber den Proben nach 110 Stunden Auslagerungszeit unter allen Betriebsbedingungen zugenommen. Die werkstofftechnischen Analysen nach der Auslagerung im Labor-Korrosionsversuchsstand zeigte eine deutliche Abnahme großer Poren in den Oxidschichten. Die Anwesenheit von Aschedepositionen führt zur Ausbildung dickerer Oxidschichten. Ursache sind Reaktionen zwischen den gebildeten Oxidschichten und den angelagerten Aschepartikeln unter Ausbildung einer Reaktionsschicht. Die bei steigendem Chromgehalt in den Werkstoffen zu erwartende Abnahme der Korrosionsaktivität durch die Bildung einer schützenden Eisen-Chrom-Spinellschicht ist aufgrund der geringen Auslagerungstemperatur von 490°C nicht eingetreten. Mit Hilfe der in dieser Arbeit durchgeführten Untersuchungen konnte gezeigt werden, dass bei niedrigen Temperaturen (T = 490°C) auch für Werkstoffe mit Chromgehalten von 0,1-6 Ma.-% Chrom konstante parabolische Wachstumsraten auftreten. Es konnten keine Vorteile im Hinblick auf geringere Korrosionsraten analysiert werden. Inwiefern die Werkstoffe bei der Temperatur von 490°C auch ein anormales Oxidationsverhalten aufweisen, könnte im Rahmen einer separaten Arbeit erforscht werden. Sowohl die berechneten als auch die gemessenen Abzehrungsraten an den untersuchten Werkstoffen liegen über den zu erwartenden, normalbedingten Abzehrungsraten, sind jedoch als nicht kritisch einzustufen. Für die realisierten Auslagerungsbedingungen (T = 490°C, p = 1 bar) ist unter Oxyfuel-Bedingungen, sowohl mit als auch ohne Aschedepositionen, keine erhöhte Korrosion feststellbar. Die ermittelten parabolischen Wachstumskonstanten weisen die gleiche Größenordnung wie die in der Literatur verfügbaren parabolischen Wachstumsraten auf. Dementsprechend befanden sich die untersuchten Korrosionsprozesse sich noch nicht in einem Langzeitgleichgewicht. Die untersuchten Werkstoffe wurden im Hinblick auf ihre Korrosionsbeständigkeit anhand der Untersuchungsergebnisse eingestuft. Darüber hinaus erfolgte unter Berücksichtigung der Beschaffungskosten für die untersuchten Werkstoffe eine Erweiterung in Form eines kommerziellen Rankings. Die Werkstoffe 13CrMo4-5 und 16Mo3 weisen das beste Preis- / Leistungsverhältnis auf. Diese Werkstoffe können unter den realisierten Bedingungen ohne Einschränkungen hinsichtlich der Lebensdauer und der Kosten eingesetzt werden. Der Werkstoff 10CrMo9-10 weist teilweise höhere Korrosionsraten als die Werkstoffe 7CrMoVTiB10-10 und VM12SHC auf, ist jedoch deutlich kostengünstiger zu beschaffen. Deshalb erfolgt im kommerziellen Ranking die Einordnung des Werkstoffes 10CrMo9-10 vor den Werkstoffen 7CrMoVTiB10-10 und VM12SHC.
Coal consumption shares approximately 1/3 of a total global primary energy consumption, therefore this will mainly impact to global warming situation in the 21th century. For this reason, the natural resource such as coal should be processed in the most efficient way. Today, we have several combustion technologies to serve this purpose and oxy-fuel combustion is one of efficient method. In oxy-fuel technology, car-bon dioxide (CO2) will be captured in the liquid form for storaging into the ocean or injecting into the rock-sediment underground.CFD is an effective tool to analyse and approximate combustion gas species, temperature and heat transfer properties in oxy-fuel furnace. However, an insight into mathematical models for oxy-coal combustion is still restricted from many unknowns such as devolatilization rate, reaction mechanism of volatile reaction, turbulent gaseous combustion of volatile product, char heterogeneous reaction, radiation properties of gaseous mixture and heat transfer inside combustion chamber and through furnace’s wall. Therefore, this dissertation aims to study mathematical modeling of lignite combustion under oxy-fuel conditions and also create new correlations for weighted sum of gray gases (WSGG) model for predictions of radiation properties of oxy-coal gas mixture.