• search hit 1 of 3
Back to Result List

SCA resistent implementation of the Montgomery kP-algorithm

  • Mathematically, cryptographic approaches are secure. This means that the time an attacker needs for finding the secret by brute forcing these approaches is about the time of the existence of our world. Practically, an algorithm implemented in hardware is a device that generates a lot of additional data during the calculation process. Its power consumption, electromagnetic radiation, etc. can be measured, saved and analysed for key extraction. Such attacks are called side channel analysis attacks and are significant threats when applying cryptographic algorithms. By considering these attacks when implementing a cryptographic algorithm, it is possible to design an implementation that is more resistant against them. The goal of this thesis was to design a methodology to securely implement the Montgomery kP-operation using an IHP implementation as a starting point. In addition, the area and energy consumption of the secure Montgomery kP-multiplier should still be highly efficient. The resistance against power analysis attacks of twoMathematically, cryptographic approaches are secure. This means that the time an attacker needs for finding the secret by brute forcing these approaches is about the time of the existence of our world. Practically, an algorithm implemented in hardware is a device that generates a lot of additional data during the calculation process. Its power consumption, electromagnetic radiation, etc. can be measured, saved and analysed for key extraction. Such attacks are called side channel analysis attacks and are significant threats when applying cryptographic algorithms. By considering these attacks when implementing a cryptographic algorithm, it is possible to design an implementation that is more resistant against them. The goal of this thesis was to design a methodology to securely implement the Montgomery kP-operation using an IHP implementation as a starting point. In addition, the area and energy consumption of the secure Montgomery kP-multiplier should still be highly efficient. The resistance against power analysis attacks of two different IHP ECC implementations was analysed in this thesis. A horizontal power analysis attack using the difference-of-means test was performed with the goal of finding potential leakage sources exploited in side channel analysis attacks, i.e. finding the reasons of a correct extraction of the cryptographic key. For both analysed ECC designs, four key candidates were extracted with a correctness of 90% or more. Through analysis of the implemented Montgomery kP-algorithm’s functionality and its power consumption, it was established that the algorithm’s operation execution flow was the main cause of the implementations’ vulnerability. Thus, a design methodology consisting in changing the Montgomery kP-algorithm operation flow was developed. As a result, the re-designed implementations do not deliver any correctly extracted key candidates whenever the difference-of-means test is performed on them. These re-designs implied an increase on the chip area by about 5% for each implementation. The execution time needed for performing a complete kP-operation was reduced for both designs. Thereby one implementation’s execution time was reduced by 12% in comparison to its original version and even though its power consumption was increased by 9%, its energy consumption per kP-operation was reduced by 4.5%.show moreshow less
  • Standardisierte kryptographische Algorithmen sind aus mathematischer Sicht sicher. Dies bedeutet, dass ein Brute-Force-Angriff zur Bestimmung des geheimen Schlüssels einen Zeitaufwand von der Dauer der Existenz unserer Welt hat. In Hardware implementierte Algorithmen generieren aber während des Berechnungsvorganges eine große Menge zusätzlicher Daten. U.a. können der Energieverbrauch des Gerätes sowie seine elektromagnetische Strahlung gemessen, gespeichert und analysiert werden, um den privaten Schlüssel zu extrahieren. Solche Angriffe werden Seitenkanalangriffe genannt und sind erhebliche Bedrohungen für die Sicherheit kryptographischer Algorithmen. Die vorliegende Arbeit hatte das Ziel, eine Methodik zur Implementierung der Montgomery kP-Operation zu entwickeln, welche Resistenz gegen Seitenkanalangriffe lieferte. Dabei wurde eine IHP Implementierung als Ausgangspunkt benutzt. Zusätzlich sollten die Fläche und der Energieverbrauch der sicheren Montgomery kP-Multiplizierer hoch effizient sein. Im Rahmen dieser Masterarbeit wurdeStandardisierte kryptographische Algorithmen sind aus mathematischer Sicht sicher. Dies bedeutet, dass ein Brute-Force-Angriff zur Bestimmung des geheimen Schlüssels einen Zeitaufwand von der Dauer der Existenz unserer Welt hat. In Hardware implementierte Algorithmen generieren aber während des Berechnungsvorganges eine große Menge zusätzlicher Daten. U.a. können der Energieverbrauch des Gerätes sowie seine elektromagnetische Strahlung gemessen, gespeichert und analysiert werden, um den privaten Schlüssel zu extrahieren. Solche Angriffe werden Seitenkanalangriffe genannt und sind erhebliche Bedrohungen für die Sicherheit kryptographischer Algorithmen. Die vorliegende Arbeit hatte das Ziel, eine Methodik zur Implementierung der Montgomery kP-Operation zu entwickeln, welche Resistenz gegen Seitenkanalangriffe lieferte. Dabei wurde eine IHP Implementierung als Ausgangspunkt benutzt. Zusätzlich sollten die Fläche und der Energieverbrauch der sicheren Montgomery kP-Multiplizierer hoch effizient sein. Im Rahmen dieser Masterarbeit wurde die Resistenz gegen Seitenkanalangriffe zweier unterschiedlicher IHP ECC Implementierungen analysiert. Ein Power-Analysis-Angriff wurde anhand des difference-of-means Testes (DoMT) durchgeführt, um mögliche Sicherheitslücken im Bezug auf Seitenkanalangriffe zu finden, d. h. um die Gründe einer erfolgreichen Schlüssel-Extrahierung festzustellen. Für beide Implementierungen wurden vier Schlüsselkandidaten mit einer Korrektheit von mindestens 90% extrahiert. Nach Analyse der Funktionalität des implementierten Montgomery kP-Algorithmus und seines Momentanleistungsverbrauchs wurde festgestellt, dass die Ausführungseihenfolge der Operationen des Algorithmus die Hauptursache des erfolgreichen Angriffes war. Hierauf aufbauend ist eine neue Methodik zur Implementierung des Montgomery kP-Algorithmus entwickelt worden. Diese Methodik basiert auf einer neuen Ausführungsreihenfolge der einzelnen Operationen im Algorithmus. Nach diesen Änderungen konnten mit dem DoMT keine Schlüssel mehr erfolgreich extrahiert werden. Die Änderungen verursachten eine Erhöhung der Implementierungsflächen um ca. 5%. Die Ausführungszeit einer kompletten kP-Operation ist für beide Implementierungen reduziert worden. Dabei wurde die Ausführungszeit z. B. einer Implementierung im Vergleich zur originalen Version um 12% reduziert und obwohl ihre durchschnittliche Leistung um 9% erhöht wurde, ist ihr Energieverbrauch pro kP-Operation um 4,5% reduziert worden.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Estuardo Alpirez Bock
URN:urn:nbn:de:kobv:co1-opus4-36288
Referee / Advisor:Prof. Dr. rer. nat. Peter Langendörfer
Document Type:Master thesis
Language:English
Year of Completion:2015
Release Date:2015/12/21
Tag:Difference-of-means test; Elliptic curve cryptography; Elliptic curve point multiplication; Power analysis; Side channel analysis
GND Keyword:Elliptische Kurve; Kryptologie
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Sicherheit in pervasiven Systemen
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Sicherheit in pervasiven Systemen
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.