Forschungsdatensätze der BAM
Filtern
Dokumenttyp
- Forschungsdatensatz (26)
Sprache
- Englisch (26)
Referierte Publikation
- nein (26)
Schlagworte
- Artificial neural networks (3)
- BAM reference data (3)
- Titania nanoparticles (3)
- X-ray scattering (3)
- Automation (2)
- Creep (2)
- Nondestructive testing (2)
- Online NMR spectroscopy (2)
- Process industry (2)
- Real-time process monitoring (2)
Organisationseinheit der BAM
- 6 Materialchemie (11)
- 8 Zerstörungsfreie Prüfung (8)
- 1 Analytische Chemie; Referenzmaterialien (4)
- 6.1 Oberflächenanalytik und Grenzflächenchemie (4)
- 6.5 Synthese und Streuverfahren nanostrukturierter Materialien (4)
- 6.6 Physik und chemische Analytik der Polymere (4)
- 1.4 Prozessanalytik (3)
- 5 Werkstofftechnik (3)
- 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (3)
- 8.6 Faseroptische Sensorik (3)
The fourth dataset dedicated to the Open Guided Waves platform presented in this work aims at a carbon fiber composite plate with an additional omega stringer at constant temperature conditions. The dataset provides full ultrasonic guided wavefields.
A chirp signal in the frequency range 20-500 kHz and Hann windowed tone-burst signal with 5 cycles and carrier frequencies of 16.5 kHz, 50 kHz, 100 kHz, 200 kHz and 300kHz are used to excite the wave. The piezoceramic actuator used for this purpose is attached to the center of the stringer side surface of the core plate.
Three scenarios are provided with this setup: (1) wavefield measurements without damage, (2) wavefield measurements with a local stringer debond and (3) wavefield measurements with a large stringer debond. The defects were caused by impacts performed from the backside of the plate. As result, the stringer feet debonds locally which was verified with conventional ultrasound measurements.
The dataset can be used for benchmarking purposes of various signal processing methods for damage imaging.
The detailed description of the dataset is published in Data in Brief Journal.
This dataset contains raw data resulting from Impact-Echo measurements at the reference conrete block "Radarplatte", located at BAM (German Federal Institute for Materials Research and Testing). This specimen has been described in detail by Niederleithinger et al. (2021), who applied muon tomography, ultrasonic echo measurements, radar and X-ray laminography to visualize its internal structure.
The Impact-Echo method is based on the excitation of the zero-group-velocity frequency of the first symmetric Lamb mode of a plate-like structure, in order to assess its thickness. Numerous publication elaborate on Impact-Echo theory, examples are (Gibson and Popovics 2005, Schubert and Köhler 2008 , Abraham and Popovics 2010).
The measurements have been conducted using a setup that contains only commercially available components. The setup consists of an Olson CTG-2 concrete thickness gauge (Olsen Instruments, USA) for actuation and sensing and an 8-bit NI USB-5132 digital storage oscilloscope (National Instruments, USA) combined with the Echolyst software (Schweizerischer Verein für technische Inspektionen (SVTI), Switzerland) for data acquisition.
Measurements were conducted using a grid of 23x23 points with a spacing of 50 mm. At each point 8192 samples were recorded at a sampling rate of 1 MS/s.
The dataset contains the (X,Y) location in mm of the individual measurement points as well as the raw measurement data at those points.
The data is provided in the formats *.mir/*.mhdr (Echolyst), *.npy (Python) and *.mat (Matlab) and *.csv to ease the import in various post-processing tools.
In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure.