7.3 Brandingenieurwesen
Filtern
Dokumenttyp
- Vortrag (21)
- Zeitschriftenartikel (18)
- Beitrag zu einem Tagungsband (13)
- Buchkapitel (3)
- Dissertation (3)
- Forschungsbericht (2)
Schlagworte
- Brandschutz (16)
- Reaktive Brandschutzsysteme (12)
- Feuerwiderstand (8)
- Stahl (7)
- Zugglieder (7)
- Fire resistance (6)
- Fire stability (5)
- Reactive fire protection system (5)
- Concrete (4)
- Dauerhaftigkeit (4)
Organisationseinheit der BAM
- 7 Bauwerkssicherheit (60)
- 7.3 Brandingenieurwesen (60)
- 7.5 Technische Eigenschaften von Polymerwerkstoffen (17)
- 5 Werkstofftechnik (8)
- 5.3 Mechanik der Polymerwerkstoffe (8)
- 7.4 Baustofftechnologie (3)
- S Qualitätsinfrastruktur (3)
- S.4 Ökodesign und Energieverbrauchskennzeichnung (3)
- 7.2 Ingenieurbau (2)
- 7.0 Abteilungsleitung und andere (1)
A systematic approach was used to investigate the weathering-induced degradation of a common water–based intumescent coating. In this study, the coatings are intended for humid indoor applications on steel substrates. The coating contains ammonium polyphosphate, pentaerythritol, melamine, and polyvinyl acetate. By replacing each ingredient with a less water-soluble substance, the most vulnerable substances, polyvinyl acetate and pentaerythritol, were identified. Furthermore, the weathering resistance of the system was improved by exchanging the ingredients. The coatings were stressed by artificial weathering tests and evaluated by fire tests. Thermogravimetry and Fourier-transform infrared spectroscopy were used to study the thermal decomposition. This study lays the foundation for the development of a new generation of water-based intumescent coatings.
The EQUFIRE project aims to study the post-earthquake fire Performance of steel frame structures and is part of the Transnational Access activities of the SERA project (www.sera-eu.org) at the ELSA Reaction Wall of the European Commission - Joint Research Centre. As it has happened in many historical occasions, after an earthquake, earthquakeinduced rupture of gas piping, failure of electrical systems, etc. may trigger fire. The structural fire performance can deteriorate because the fire acts on a previously damaged structure. In addition, the earthquake may have damaged fire protection elements and the fire can spread more rapidly if compartmentation walls have failed. This is particularly relevant for steel structures as the high thermal conductivity of elements with small thickness entails quick temperature rise with consequent fast loss of strength and stiffness.
EQUFIRE studied a four-storey three-bay steel frame with concentric bracings in the central bay. The structure was designed for reference peak ground acceleration equal to 0.186g, soil type B and type 1 elastic response spectrum according to Eurocode 8. Tests were performed at the ELSA Reaction Wall and at the furnace of the Federal Institute for Materials Research and Testing (BAM).
The experimental activities at the ELSA Reaction Wall comprise pseudo-dynamic tests on a full-scale specimen of the first storey of the building, while the upper three storeys are numerically simulated. The aim is to study the response of the structure and fire protection elements, including their interaction, under the design earthquake and for different configurations: bare frame without fire protection, specimen with three fire protection solutions (conventional and seismic-resistant boards, and vermiculite sprayed coating) applied on the bracing and one column, and with conventional and seismic-resistant fire barrier walls built in the two external bays of the specimen. The testing programme at BAM included fire tests of five columns (two specimens without fire protection elements and three specimens with the types of fire protection mentioned above). Before the fire test, each column was subjected to a horizontal and vertical displacement history resulting from the seismic action. During the fire tests, the effect of the surrounding structure was simulated by limiting the axial thermal expansion.
The experimental results will serve to study the response of structural and non-structural components to fire following earthquake scenarios, with a view to improving existing design guidelines and future standards.
Reaktive Brandschutzsysteme können die Feuerwiderstandsdauer von Stahlbauteilen signifikant erhöhen. Im Brandfall schäumt das reaktive Brandschutzsystem auf und bildet um das Stahlbauteil eine thermische Schutzschicht aus. Dadurch wird die Erwärmung des Stahls verlangsamt und der temperaturbedingte Festigkeitsverlust verzögert. Reaktive Brandschutzsysteme werden überwiegend in drei Bereichen angewendet: Hochbau, Offshore bzw. maritimer Sektor sowie Tank- bzw. Behälterbau. Insbesondere bei Stahltanks und -behältern sind häufig einfach oder auch doppelt gekrümmte Bauteiloberflächen anzutreffen. Aufgrund des meist begrenzten seitlichen Expansionsvermögens von reaktiven Brandschutzsystemen kann es bei Bauteilen mit konvexer Oberflächenkrümmung zu einer Intensivierung der Rissbildung im Schaum kommen, wodurch sich häufig die thermische Schutzwirkung verschlechtert. Da zum Thema des Einflusses der Oberflächenkrümmung auf die Leistungsfähigkeit reaktiver Brandschutzsysteme bisher kaum Untersuchungen vorliegen, wurden exemplarisch zwei Tankböden mit zwei verschiedenen Trockenschichtdicken eines reaktiven Brandschutzsystems einer Brandprüfung unterzogen. Bei gleicher Trockenschichtdicke des reaktiven Brandschutzsystems zeigten die Tankböden eine wesentlich schnellere Erwärmung als ebene Stahlplatten mit vergleichbarem Profilfaktor. Die Brandprüfungen und die Ergebnisse zum Einfluss der Oberflächenkrümmung werden im Beitrag ausführlich vorgestellt und diskutiert.
Engineering Modelling
(2019)
This chapter presents the most commonly used approach to analyse the
thermo-mechanical behaviour of concrete structures subjected to high temperatures as in the case of fire loading. Prescriptions of the Eurocode are detailed for the thermal as well as the mechanical analysis. Finally, recommendations from two national (Austrian and German) guidelines give some improvements for Underground infrastructure.
Advanced Modelling
(2019)
Kontinuumsmechanische Werkstoffmodelle zur numerischen Simulation von Stahlbauteilen im Brandfall
(2020)
Das nichtlineare und geschwindigkeitsabhängige1 Materialverhalten von Stahl wird besonders bei hohen Temperaturen sichtbar. Für Finite-Elemente-Simulationen von Stahlkonstruktionen im Brandfall sollte aus diesem Grund plastisches und geschwindigkeitsabhängiges Materialverhalten beschrieben werden. Die vorliegende Arbeit betrachtet unter diesem Aspekt bisherige Materialuntersuchungen und macht Vorschläge für dreidimensionale Materialmodelle mit entsprechenden Eigenschaften.
Es werden zunächst die phänomenologischen Eigenschaften von Baustahl anhand einer Literaturrecherche analysiert, wobei verstärkt auf Untersuchungen des Materialverhaltens bei Belastungen und Aufheizprozessen, wie sie im Brandfall zu erwarten sind, geachtet wird. Die für die Bemessung von Stahlkonstruktionen gebräuchliche Spannungsbeschreibung des EC 3-1-2 wird untersucht. Es werden ihre Stärken, aber auch die zur Entwicklung einer kontinuumsmechanischen Materialformulierung fehlenden Eigenschaften, aufgezeigt.
Ein nichtlinear-elastisches kontinuumsmechanisches Materialmodell der Deformationstheorie der Plastizität wird so angepasst, dass es die Spannungs-Dehnungslinien gemäß EC 3-1-2 im einachsigen Spannungszustand beschreibt.
Es wird des Weiteren ein thermoelastisch-viskoplastisches Modell vorgestellt, das in der Lage ist, Kriechen und Relaxation bei Aufheiz- und Abkühlprozessen zu beschreiben. Die Struktur dieses Materialmodells wird so gewählt, dass die Parameter an hierfür geeigneten Messergebnissen leicht identifiziert werden können. Der deviatorische Anteil des Modells besteht aus einem geschwindigkeitsunabhängigen, plastischen Anteil und einem geschwindigkeitsabhängigen, viskoelastischen Anteil. Der geschwindigkeitsunabhängige, plastische Anteil wurde als Differentialgleichung auf Grundlage der so genannten endochronen Plastizitätstheorie formuliert.
Die Parameter der Materialmodelle werden auf Grundlage der Messergebnisse stationärer Warmzugversuche an Baustahlproben identifiziert.
Sowohl das nichtlinear-elastische EC 3-1-2-Materialmodell als auch das thermoelastisch-viskoplastische Materialmodell mit den an Baustahl angepassten Materialparametern wird numerisch für die Verwendung mit Finite-Elemente-Programmen aufbereitet und als UMAT-Subroutine für ABAQUS in der Programmiersprache FORTRAN implementiert. Hierbei wird insbesondere auf die Bereitstellung der konsistenten Tangentenoperatoren Wert gelegt, um eine effiziente numerische Berechnung bei Verwendung der Materialmodelle zu ermöglichen.
Abschließend werden erste Simulationsrechnungen vorgestellt, um beispielhaft die Möglichkeiten der Anwendung der entwickelten und implementierten Materialmodelle für Simulationen von Stahlkonstruktionen im Brandfall aufzuzeigen.
Stichworte: Brandschutz, Stahl, Brandverhalten, Finite-Elemente-Methode, Materialmodell, Eurocode 3-1-2, UMAT
1Ist das Materialverhalten abhängig von der Prozessgeschwindigkeit, wird es als geschwindigkeitsabhängig bezeichnet. Prozesse können sowohl dehnungs- als auch spannungs- oder temperaturgesteuert sein. Die Begriffe zeitabhängig und zeitunabhängig werden hier vermieden, da diese in der Materialwissenschaft mit Alterungsprozessen (’aging’) in Verbindung gebracht werden.
Die Erkenntnisse zu reaktiven Brandschutzsystemen (RBS) werden kontinuierlich erweitert, was sich in der Entwicklung neuer Produkte und der Ausweitung des durch technische Regelungen abgedeckten Anwendungsbereichs äußert. Der hier vorliegende Beitrag konzentriert sich auf die Verwendung von RBS auf Stahlkonstruktionen. In den vergangenen zehn Jahren wurden, abgesichert durch neue Erkenntnisse aus der Forschung, die Anwendung auf Stahlzuggliedern mit offenem Profil präzisiert und im Rahmen allgemeiner bauaufsichtlicher Zulassungen (abZ) neu geregelt. Ferner wurde die Grundlage geschaffen, die Anwendung von RBS auf Zuggliedern mit kreisrundem Vollprofil zu bewerten und auf Basis der abZ zu ermöglichen. Neben einer umfassenden Darstellung der aktuellen nationalen und europäischen Regelungen zu RBS, werden technologische Besonderheiten und deren Einfluss auf den Regelungsinhalt im Beitrag thematisiert. In der jüngsten Vergangenheit stellt sich mit zunehmender Dringlichkeit die Frage nach der Bewertung der Dauerhaftigkeit von RBS für lange Zeiträume, wobei damit Nutzungsdauern weit jenseits der in den nationalen und europäischen Regelungen bereits etablierten 10 Jahre gemeint sind. In diesem Zusammenhang ist zu klären, wie der Feuerwiderstand von Konstruktionen zu bewerten ist, die bereits über lange Zeiträume mit RBS versehen sind.
Nowadays there are intumescent coatings available for diverse applications. There is no established assessment of their protection performance besides the standard time-temperature curve, but natural fire scenarios often play an important role. A reliable straightforward performance-based assessment is presented. The effective thermal conductivity per thickness is calculated based on intermediate-scale fire tests. The optimum thermal insulation, the time to reach it, and the time until contingent failure of the coating are used for an assessment independent of the heating curve. The procedure was conducted on four different commercially intumescent coatings for steel construction, one solvent-based, one waterborne, one epoxy-based, and a bandage impregnated with a waterborne coating. The performance was studied under four different but similar shaped heating curves with different maximum temperatures (standard time-temperature curve, hydrocarbon curve and two self-designed curves with reduced temperature). The thermal protection performance is crucially affected by the residue morphology. Therefore, a comprehensive morphology analysis, including micro-computed tomography and scanning electron microscopy, was conducted on small-scale residues (7.5 x 7.5 cm2). Two different types of inner structures and the residue surface after different heat exposures were discussed in terms of their influence on thermal protection performance.
Bare steel constructions are often integrated in modern buildings. Intumescent coatings are widely used to protect the steel from heating up too quickly in a case of fire. As the functionality of intumescent coatings decreases with the impact of weathering processes, it is important to understand the mechanisms of material degradation to maintain long durability. The weathering-induced degradation behavior of a water-borne intumescent coating was examined, and the weakest points of the formulation were identified by a systematic approach. Resulting from this investigation, adjustments to the formula were made, leading to improved weathering resistance.