5 Werkstofftechnik
Filtern
Dokumenttyp
- Zeitschriftenartikel (46) (entfernen)
Schlagworte
- Additive manufacturing (12)
- Additive Manufacturing (6)
- Ceramic (5)
- 3D printing (4)
- 3D-Printing (3)
- Additive Fertigung (3)
- Ceramics (3)
- Keramik (3)
- Porosity (3)
- Glass microspheres (2)
Organisationseinheit der BAM
- 5 Werkstofftechnik (46)
- 5.4 Keramische Prozesstechnik und Biowerkstoffe (46)
- 8 Zerstörungsfreie Prüfung (4)
- 8.5 Mikro-ZfP (4)
- 5.6 Glas (3)
- 4 Material und Umwelt (2)
- 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe (2)
- 9 Komponentensicherheit (2)
- 9.3 Schweißtechnische Fertigungsverfahren (2)
- 4.0 Abteilungsleitung und andere (1)
Wollastonite (CaSiO 3 ) – diopside (CaMgSi 2 O 6 ) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn in fluenced by the powder size and the sensitivity of CaO – MgO – SiO 2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800 – 900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which bene fit theiruse for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed.
Vertebroplasty or kyphoplasty of osteoporotic vertebral fractures bears the risk of pulmonary cement embolism (3.5%–23%) caused by leakage of commonly applied acrylic polymethylmethacrylate (PMMA) cement to spongious bone marrow or outside of the vertebrae. Ultraviscous cement and specific augmentation systems have been developed to reduce such adverse effects. Rapidly setting, resorbable, physiological calcium phosphate cement (CPC) may also represent a suitable alternative.
PURPOSE: This study aimed to compare the intravertebral extrusion of CPC and PMMA cement in an ex vivo and in vivo study in sheep.
STUDY DESIGN/SETTING: A prospective experimental animal study was carried out. METHODS: Defects (diameter 5 mm; 15 mm depth) were created by a ventrolateral percutane-ous approach in lumbar vertebrae of female Merino sheep (2–4 years) either ex vivo (n = 17) or in vivo (n = 6), and injected with: (1) CPC (L3); (2) CPC reinforced with 10% poly(l-lactide-co-glycolide) (PLGA) fibers (L4); or (3) PMMA cement (L5; Kyphon HV-R). Controls were untouched (L1) or empty defects (L2). The effects of the cement injections were assessed in vivo by blood gas analysis and ex vivo by computed tomography (CT), micro-CT (voxel size: 67 µm), histology, and biomechanical testing.
Advancements in the fields of biocompatible materials, manufacturing processes, computational methods and medicine have led to the emergence of a new field: micro-scale scaffolds for bone replacement and regeneration. Yet most such scaffolds produced today are characterized by very basic geometry, and their microstructure differs greatly from that of the actual tissue they are intended to replace. In this paper, we propose a novel approach for generating micro-scale scaffolds based on processing actual micro-CT images and then reconstructing a highly accurate geometrical model. This model is manufactured by means of a state-of-the-art 3D additive manufacturing process from biocompatible materials. At the micro-scale level, these scaffolds are very similar to the original tissue, thus interfacing better with the surrounding tissue and facilitating more efficient rehabilitation for the patient. Moreover, the approach facilitates the design and manufacture of patient-specific scaffolds which can copy patients exact structural and mechanical characteristics, taking into account their physical condition and medical history. By means of multi-resolution volumetric modeling methods, scaffold porosity can also be adapted according to specific mechanical requirements. The process of designing and manufacturing micro-scale scaffolds involves five major stages: (a) building a volumetric multi-resolution model from micro-CT images; (b) generation of surface geometric model in STL format; (c) additive manufacturing of the scaffold; (d) scaffold shape verification relative to the geometric design; and (e) verification of mechanical properties through finite element analysis. In this research, all the proposed stages of the approach were tested. The input included micro-CT scans of porous ceramic structure, which is quite similar to commercial porous scaffolds. The results show that the proposed method is feasible for design and manufacture of micro-scale scaffolds.
Over the last decade there have been increasing efforts to develop three-dimensional (3D) scaffolds for bone tissue Engineering from bioactive ceramics with 3D printing emerging as a promising technology. The overall objective of the present study was to generate a tissue engineered synthetic bone graft with homogenously distributed osteoblasts and mineralizing bone Matrix in vitro, thereby mimicking the advantageous properties of autogenous bone grafts and facilitating usage for reconstructing segmental discontinuity defects in vivo . To this end, 3D scaffolds were developed from a silica-containing calcium alkali orthophosphate, using, fi rst, a replica technique – the Schwartzwalder – Somers method – and, second, 3D printing, (i.e. rapid prototyping). The mechanical and physical scaffold properties and their potential to facilitate homogenous colonization by osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture were examined.
Osteoblastic cells were dynamically cultured for 7 days on both scaffold types with two different concentrations of 1.5 and 3 × 10⁹ cells/l. The amount of cells and bone matrix formed and osteogenic marker expression were evaluated using hard tissue histology, immunohistochemical and histomorphometric analysis. 3D-printed scaffolds (RPS) exhibited more micropores, greater compressive strength and silica release. RPS seeded with 3 × 10⁹ cells/l displayed greatest cell and extracellular Matrix formation, mineralization and osteocalcin expression. In conclusion, RPS displayed superior mechanical and biological properties and facilitated generating a tissue engineered synthetic bone graft in vitro, which mimics the advantageous properties of autogenous bone grafts, by containing homogenously distributed terminally differentiated osteoblasts and mineralizing bone matrix and therefore is suitable for subsequent in vivo implantation for regenerating segmental discontinuity bone defects.
2014AbstractWollastonite/apatite glass-ceramics have been successfully prepared by a novel approach, consisting of the heat treatment of a silicone resinembedding micro-sized CaCO3particles, that act as reactive fillers, and bioactive glass powder in the SiO2–CaO–P2O5–K2O–Na2O–MgO–CaF2system. Zn-containing silicates, such as hardystonite (Ca2ZnSi2O7) and willemite (Zn2SiO4), were also developed either by directly mixing ZnOpowders with the glass, or by embedding them in the preceramic polymer, as additional fillers.
As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump.
Particle size gradation is regarded as an effective method for overcoming the contradicting requirements in three-dimensional printing (3DP). In present work, particle size gradation was optimized to obtain both acceptable flowability of the powder material and high-strength 3D-printed glass-ceramic products. The effect of gradation on the printing process, sintering process and performance of the 3D-printed glass-ceramic products was investigated comprehensively. The glass-ceramic powders with three size ranges were mixed in certain proportions and applied to print parts. The result showed parts printed with powder mixed by 60 wt% 45–100 µm and 40 wt% 0–25 µm particles had satisfactory density of 1.60 g/cm³ and bending strength of 13.8 MPa. The flowability decreased with an increasing proportion of fine particles. Part density was determined by the powder bulk density in the powder bed as well as the shrinkage during sintering while strength of part was found to be dependent on the sintering degree.
Gradient porous silicon nitride (Si3N4) was fabricated by a novel vacuum foaming and freeze drying process. Aqueous Si3N4 slurries were foamed at vacuum pressure of 50–90 kPa, the green body was obtained by the freeze drying process, a gradient pore structure with porosities of 72–90% was achieved after pressureless sintering at 1680 °C. The porosity was increased with decreasing vacuum pressure. The pore structure consists of large pores (~100 μm) on top, medium pores (~45 μm) on the wall of the large pores, and small pores (~0.7 μm) in the matrix. Such gradient porous Si3N4 with macro- and micro-pores has potential application as high temperature filters.
Chemically modified bioactive glasses based on ICIE16 were prepared with the melt-quenching method using water as a quenching medium. The sinterability of these bioactive glasses was investigated and is discussed in this article. The sintering experiments were conducted with different sintering temperatures, sintering times and heating rates. Those parameters are crucial for dense glass with an amorphous structure. The particle size (d50) of the starting glass powder was determined at 88 μm and kept constant. The pre-pressed glass pellets were cold-isostatically pressed at 300 MPa to a green density of around 63 %. Density development, phase identification, shrinkage behavior and the microstructure were investigated to determine the sinterability of the developed glasses. The glass powders were sintered at different temperatures inside the processing window while crystallization was monitored. The results have shown that the sinterability of the developed glasses strongly dependsonthe proposed chemical additions. The highest density reached was 96 %, which belongs to BP1 glass with sintering conditions of 20 K/min heating rate for 60 min at 750 °C.