Filtern
Erscheinungsjahr
Dokumenttyp
- Vortrag (51)
- Zeitschriftenartikel (35)
- Beitrag zu einem Tagungsband (29)
- Beitrag zu einem Sammelband (21)
- Posterpräsentation (9)
- Forschungsbericht (7)
- Sonstiges (1)
Schlagworte
- Selbstentzündung (21)
- Self-ignition (18)
- Explosionsschutz (12)
- Ringversuch (11)
- Sicherheitstechnische Kenngrößen (10)
- Gefahrstoff (8)
- Gefahrgut (7)
- Messunsicherheit (7)
- Methodenvalidierung (7)
- Prüfmethode (7)
Organisationseinheit der BAM
Purpose – This purpose of this paper is to report about the temperature distribution in metal and ceramic powder beds during 3D printing. The differing powders are thoroughly characterized in terms of thermal conductivity, thermal diffusivity, emissivity spectra and density.
Design/methodology/approach – The temperature distribution was measured in a 3D printing appliance (Prometal R1) with the help of thin thermocouples (0.25 mm diameter) and thermographic imaging. Temperatures at the powder bed surface as well as at differing powder bed depths were determined. The thermal conductivity, thermal diffusivity and emissivity spectra of the powders were measured as well. Numerical simulation was used to verify the measured temperatures.
Findings – The ceramic powder heated up and cooled down more quickly. This finding corresponds well with numerical simulations based on measured values for thermal conductivity and thermal diffusivity as well as emissivity spectra. An observed color change at the metal powder has only little effect on emissivity in the relevant wavelength region.
Research limitations/implications – It was found that thermocouple-based temperature measurements at the powder bed surface are difficult and these results should be considered with caution.
Practical implications – The results give practitioners valuable information about the transient temperature evolution for two widely used but differing powder systems (metal, ceramic). The paramount importance of powder bed porosity for thermal conductivity was verified. Already small differences in thermal conductivity, thermal diffusivity and hence volumetric heat capacity lead to marked differences in the transient temperature evolution.
Originality/value – The paper combines several techniques such as temperature measurements, spectral emissivity measurements, measurements of thermal conductivity and diffusivity and density measurements. The obtained results are put into a numerical model to check the obtained temperature data and the other measured values for consistency. This approach illustrates that determinations of surface temperatures of the powder beds are difficult.
Staubexplosionen können in nahezu allen Branchen auftreten, in denen brennbare Schüttgüter und Stäube gehandhabt werden oder entstehen können, vor allem dort, wo Stäube in aufgewirbelter Form vorkommen. Abgelagerte Stäube können bei starker Erwärmung zur Entzündung gelangen. Die Beurteilung daraus entstehender Gefahren und das Auslegen von vorbeugenden und konstruktiven Schutzmaßnahmen erfolgt über sog. sicherheitstechnische Kenngrößen (STK). Im Rahmen eines vom Bundesland Sachsen geförderten Projekts sind von der Bundesanstalt für Materialforschung und -prüfung (BAM) STK brennbarer Stäube zu Staubgruppen zusammengefasst und in den Gemeinsamen Stoffdatenpool Bund/Länder (GSBL) integriert worden. Grundlage für die Staubgruppen waren zahlreiche Datensätze, die in der Datenbank GESTIS-STAUB-EX des Instituts für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) veröffentlich sind. Angegeben werden allerdings nicht mehr die dort enthaltenen Kenngrößen einzelner Stäube, sondern Bandbreiten, innerhalb derer sich die STK der in den Staubgruppen zusammengefassten Stäube bewegen können. Je nach Datenlage wurden die sicherheitsrelevanten Grenzen dieser Bandbreiten mit einem Ranking versehen.
To date, in the textile manufacturing process of warp knitting, trouble-shooting and process optimization mainly rely on empirical knowledge and experiments. This factor limits the achievable increase in productivity and quality. On the other hand, using simulations, different phenomena that affect the quality of the knitted fabric and the knitting process can be clarified in the run-up of the experiments. Consequently, an increase in quality and flexibility can be reached with reduced experimental effort. This paper presents a process simulation of the warp thread dynamics in the thread feeding system of a warp knitting machine. For this purpose, a continuum model of the warp thread that includes the spatial dynamics of the thread and the axial transport movement has been developed.
For the classification and safe handling and use of the chemicals, special standardized testing proce-dures have been developed and are used world-wide. Safety experts must be able to fully rely on the precise execution of the respective laboratory tests and assessments. In this context interlaboratory tests (round robin tests, interlaboratory comparisons / intercomparisons) are a crucial element of a laboratory's quality system. Participation in interlaboratory tests is explicitly recommended by the standard ISO/IEC 17025.
The present document reports on the results of the interlaboratory test 2010/2011 on the test method DIN EN 15188:2007 “Determination of the spontaneous ignition behaviour of dust accumulations” [1] which was organized by the Center for Quality Assurance for Testing of Dangerous Goods and Haz-ardous Substances.
The test method DIN EN 15188:2007 is applied to characterize the self-ignition behaviour of combus-tible dusts. The experimental basis for describing the self-ignition behaviour of a given dust is the de-termination of the self-ignition temperatures (TSI) of differently-sized volumes of the dust sample by isoperibolic hot storage experiments (storage at constant oven temperatures) in commercially availa-ble ovens. The results thus measured reflect the dependence of self-ignition temperatures upon dust volume [1].
Several internal investigations and interlaboratory comparisons in the past have shown significant differences between the lab-specific results of hot storage tests.
Figure 2-1 shows the Pseudo-Arrhenius plot of hot storage tests of eight different laboratories (Round Robin Test 2002, BAM). The dust under this investigation was Lycopodium powder (spores). The par-ticipants of this interlaboratory test used different laboratory ovens (size, ventilation) as well as differ-ent sample baskets (shape, mesh size, single- and double-walled).
Figure 2-1 shows clearly that this test failed to produce reasonable reproducibility of the TSI between the different laboratories. As possible reasons for the deviations have been identified lab-specific dif-ferences, e.g.:
- oven ventilation (enforced, natural convection),
- oven size,
- sample baskets,
- radiation effects,
- measuring precision (temperature difference between tests with ignition and no ignition),
- minimum sample size.
To reduce the differences between the labs it was necessary to ameliorate the testing method and to improve the execution of the method by the lab. From there, the installation of an inner chamber into the laboratory oven was suggested as experimental set-up in EN 15188:2007 to provide more repro-ducible test conditions. The aappropriateness of this set-up has not been verified yet.
The current interlaboratory test 2010-2011 focuses on the use of a special mesh wire screen and spe-cial volumes of the sample baskets (cubes) to normalise/harmonise the test conditions in the different labs. In preparation for the interlaboratory test a joint program between Syngenta and BAM has been initiated in 2009. As a result of these investigations a modified set-up ( chapter 3) has been identi-fied to be probably more appropriate than the suggested set-up in DIN EN-15188:2007.
Due to the time-consuming test procedure and to optimize the workflow for the laboratories this in-terlaboratory test should be performed stepwise as a multi-level test ( chapter 5.4) on one typical test sample.
Miscanthus x giganteus energy crop grown in Ireland was harvested on 21st of February and 28th of March 2012 to examine the effects of harvesting time on self-heating during storage of Miscanthus chips in clamps (98 m³) under weather sheltered conditions. There was a relatively large difference in moisture content, of 21.4%, between Miscanthus crop harvested in February and March (41.6 and 20.2%, respectively). Temperature evolution over a storage period of up to 125 days was monitored at different heights and distances from the centre within the clamps. Maximum temperature in the February constructed clamp reached 69 °C compared to 28 °C in the March constructed clamp. Microbial activity was monitored via carbon dioxide and oxygen gas measurements. The high moisture clamp showed higher microbial activity and a volume yield loss of 4.3% due to decomposition in the top section of the clamp. Quality indices post-storage were also assessed. Calorific values from Miscanthus sampled 1 m below the top surface were similar after storage for both February and March constructed clamps, i.e. 18.52 and 18.70 MJ kg-1, respectively. A reliable assessment of self-heating in Miscanthus chip clamps has important consequences for both self-ignition risk and biomass quality.
Determination of measurement uncertainties in adiabatic hot-storage experiments for reactive dusts
(2013)
The formal kinetics of self-ignition of solid bulk materials theoretically can be derived from just one single adiabatic hot-storage test. The question arises how uncertainties in the measurements can be quantified and how these uncertainties affect the results of the subsequent predictions. Adiabatic and isoperibolic hot-storage basket tests were performed for samples of lignite coal, black coal, cork dust, a polymer dust, and wax-coated silicid acid. In the adiabatic experiments, the starting temperature and the temperature control of the oven were varied systematically to study the uncertainty margin of adiabatic tests. The apparent activation energy and the pre-exponential factor of the lumped reaction were derived from the adiabatic tests including average values and standard deviations and compared to isoperibolic experiments performed according to the European standard EN 15188. It could be shown that with a precise temperature control of the adiabatic oven combined with an automated computation of the maximum rate of temperature rise the uncertainty of the apparent activation energy can be limited to less than 10%.
A numerical model is presented which consists of a set of partial differential equations for the transport of heat and mass fractions of eight chemical species to describe the onset of self-ignition and the propagation of smouldering fires in deposits of bulk materials or dust accumulations. The chemical reaction sub-model includes solid fuel decomposition and the combustion of char, carbon monoxide and hydrogen.
The model has been validated against lab-scale self-ignition and smouldering propagation experiments and then applied to predictions of fire scenarios in a lignite coal silo. Predicted reaction temperatures of 550 K and propagation velocities of the smouldering front of about 6 mm/h are in good agreement with experimental values derived from lab-scale experiments.