Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (31)
- Beitrag zu einem Tagungsband (8)
- Vortrag (5)
- Beitrag zu einem Sammelband (4)
- Buchkapitel (1)
- Dissertation (1)
- Forschungsbericht (1)
Sprache
- Englisch (51) (entfernen)
Schlagworte
- Neural networks (7)
- Welding simulation (7)
- Aluminium (5)
- Welding (5)
- Inverse heat conduction problem (4)
- Laser beam welding (4)
- Friction stir welding (3)
- Grain refinement (3)
- Mechanical properties (3)
- Residual stress (3)
Organisationseinheit der BAM
- 9 Komponentensicherheit (37)
- 9.3 Schweißtechnische Fertigungsverfahren (36)
- 5 Werkstofftechnik (5)
- 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe (3)
- 5.2 Experimentelle und modellbasierte Werkstoffmechanik (3)
- 8 Zerstörungsfreie Prüfung (3)
- 8.4 Akustische und elektromagnetische Verfahren (2)
- 8.5 Mikro-ZfP (2)
- 5.5 Technische Keramik (1)
- 6 Materialschutz und Oberflächentechnik (1)
The present thesis provides a contribution to the solution of the inverse heat conduction problem in welding simulation. The solution strategy is governed by the need that the phenomenological simulation model utilised for the direct solution has to provide calculation results within short computational time. This is a fundamental criterion in order to apply optimisation algorithms for the detection of optimal model parameter sets. The direct simulation model focuses on the application of functional-analytical methods for solving the corresponding partial differential equation of heat conduction. In particular, volume heat sources with a bounding of the domain of action are applied. Besides the known normal and exponential distribution, the models are extended by the introduction of parabolically distributed heat sources. Furthermore, the movement on finite specimens under consideration of curved trajectories has been introduced and solved analytically. The calibration of heat source models against experimental reference data involves the simultaneous adaptation of model parameters. Here, the global parameter space is searched in a randomised manner. However, an optimisation pre-processing is needed to get information about the sensitivity of the weld characteristics like weld pool dimension or objective function due to a change of the model parameters. Because of their low computational cost functional-analytical models are well suited to allow extensive sensitivity studies which is demonstrated in this thesis. For real welding experiments the applicability of the simulation framework to reconstruct the temperature field is shown. In addition, computational experiments are performed that allow to evaluate which experimental reference data is needed to represent the temperature field uniquely. Moreover, the influence of the reference data like fusion line in the cross section or temperature measurements are examined concerning the response behaviour of the objective function and the uniqueness of the optimisation problem. The efficient solution of the inverse problem requires two aspects, namely fast solutions of the direct problem but also a reasonable number of degrees of freedom of the optimization problem. Hence, a method was developed that allows the direct derivation of the energy distribution by means of the fusion line in the cross section, which allows reducing the dimension of the optimisation problem significantly. All conclusions regarding the sensitivity studies and optimisation behaviour are also valid for numerical models for which reason the investigations can be treated as generic.
The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given.
Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional inputeoutput data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy.
Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions.
Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment.
The development within the offshore wind energy sector towards
more powerful turbines combined with increasing water depth
for new wind parks is challenging both, the designer as well as
the manufacturer of support structures. Besides XL-monopiles
the jacket support structure is a reasonable alternative due to the
high rigidity combined with low material consumption. However,
the effort for manufacturing of the hollow section joints reduces
the economic potential of jacket structures significantly. Therefore,
a changeover from an individual towards a serial production
based on automated manufactured tubular joints combined with
standardized pipes has to be achieved. Hence, this paper addresses
the welding process chain of automated manufactured
tubular joints including digitization of the relevant manufacturing parameters such as laser scanning of the weld seam geometry.
An experimental setup to integrate laser sensor into conventional GMAW setups via a unified control architecture is described. The setup is used to automate and monitor narrow-gap GMAW. A way to develop GMAW arc-sensors using artificial neural networks using the setup is shown.
The control system is connected to a relational database to store various process measurements. The database can be accessed to filter previous weldments by numerous criteria which allows modelling of process parameter correlation among vast datasets. Such models can be used for process monitoring and control in future applications.